Advertisement

The DEDALE Prototype

  • Stéphane Grumbach
  • Philippe Rigaux
  • Michel Scholl
  • Luc Segoufin
Chapter

Abstract

This chapter introduces DEDALE, one of the first implementations of a database system based on the linear constraint model. DEDALE is a long term project started in 1996 as a cooperation between the VERSO group at INRIA and the VERTIGO group at CNAM. DEDALE is intended to demonstrate the practical relevance of this model to handle geometric applications in various areas such as GIS or spatio-temporal databases. The system represents and manipulates multi-dimensional point-sets as linear constraint relations which are nested into classical relational tuples. Although the (global) dimension is arbitrary, the orthographic dimension (orthodim) (see Section 14.3.2) is at most two. This restriction allows for a trade-off between efficiency of evaluation and representation power.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic Notes

  1. [GRSS97]
    S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin. DEDALE, A spatial constraint database. In Proceedings of the 6th International Workshop on Database Programming Languages (DBPL’97), volume 1369 of Lecture Notes in Computer Science, pages 38–59. Springer-Verlag, 1997.Google Scholar
  2. [GRS98a]
    S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex spatial queries. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data (SIGMOD’98), pages 213–224. ACM Press, 1998.CrossRefGoogle Scholar
  3. [GRS98b]
    S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-temporal data handling with constraints. In Proceedings of the 6th International Symposium on Advances in Geographic Information Systems (ACMGIS’98), pages 106–111, 1998.Google Scholar
  4. [BBC97]
    A. Belussi, E. Bertino, and B. Catania. Manipulating spatial data in constraint databases. In Max J. Egenhofer and John R. Herring, editors, 5th Symposium on Large Spatial Databases (SSD’97), volume 1262 of Lecture Notes in Computer Science, pages 115–141. Springer-Verlag, 1997.Google Scholar
  5. [BDK92]
    F. Bancilhon, C. Delobel, and P. C. Kanellakis, editors. Building an Object-Oriented Database System: The Story of 02. Morgan Kaufmann, 1992.Google Scholar
  6. [BCD89]
    F. Bancilhon, S. Cluet, and C. Delobel. A query language for the 02 object-oriented database system. In Proceedings of the 2nd International Workshop on Database Programming Languages (DBPL’89), pages 122–138. Morgan Kaufmann, 1989.Google Scholar
  7. [Tec98a]
    Technology. O2Engine API Reference Manual, 1998.Google Scholar
  8. [Tec98b]
    Technology. O2Engine Spatial Toolkit, 1998.Google Scholar
  9. [GJPT78]
    M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon. Information Processing Letters (IPL), 7 (4): 175–179, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [FM84]
    A. Fournier and D. Y. Montuno. Triangulating simple polygons and equivalent problems. ACM Transactions on Graphics (TOG), 3 (2): 153–174, 1984.zbMATHCrossRefGoogle Scholar
  11. [Cha91]
    B. Chazelle. Triangulating a simple polygon in linear time. GEOM- ETRY: Discrete and Computational Geometry, 6: 485–524, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Sei91]
    R. Seidel. A simple and fast incremental and randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Computational Geometry: Theory and Applications (CGTA), 1: 51–64, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [PS85]
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag, 1985.CrossRefGoogle Scholar
  14. [CD85]
    B. Chazelle and D. P. Dobkin. Optimal convex decomposition. In G. T. Toussaint, editor, Computational Geometry, volume 2, pages 63–133. North-Holland, 1985.Google Scholar
  15. [Kei85]
    J. M. Keil. Decomposing a polygon into simpler components. SIAM Journal on Computing, 14 (4): 799–817, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [HM83]
    S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons. In Proceedings of the 4th Conference on Fundamentals of Computation Theory (FCT), volume 158 of Lecture Notes in Computer Science, pages 207–218. Springer-Verlag, 1983.Google Scholar
  17. [SFGM93]
    M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000 benchmark. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD’93), pages 2–11. ACM Press, 1993.CrossRefGoogle Scholar
  18. [Gra93]
    G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25 (2): 73–170, 1993.CrossRefGoogle Scholar
  19. [BG92]
    L. Becker and R. H. Güting. Rule-based optimization and query processing in an extensible geometric database system. ACM Transactions on Databases Systems (TODS), 17 (2): 247–303, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stéphane Grumbach
  • Philippe Rigaux
  • Michel Scholl
  • Luc Segoufin

There are no affiliations available

Personalised recommendations