Advertisement

Discontinuous Galerkin Methods for Convection-Dominated Problems

  • Bernardo Cockburn
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 9)

Abstract

We present and analyze the Runge Kutta Discontinuous Galerkin method for numerically solving nonlinear hyperbolic systems. The basic method is then extended to convection-dominated problems yielding the Local Discontinuous Galerkin method. These methods are particularly attractive since they achieve formal high-order 0accuracy, nonlinear stability, and high parallelizability while maintaining the ability to handle complicated geometries and capture the discontinuities or strong gradients of the exact solution without producing spurious oscillations. The discussed methods are readily applied to the Euler equations of gas dynamics, the shallow water equations, the equations of magneto-hydrodynamics, the compressible Navier-Stokes equations with high Reynolds numbers, and the equations of the hydrodynamic model for semiconductor device simulation. As a final example, consideration is given to the application of the discontinuous Galerkin method to the Hamilton-Jacobi equations.

Keywords

Discontinuous Galerkin Discontinuous Galerkin Method Error Order Finite Element Space Numerical Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.L. Atkins and C.-W. Shu. Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations. Technical Report 96–51, ICASE, 1996. To appear in AIAA J.Google Scholar
  2. 2.
    I. Babuska, C.E. Baumann, and J.T. Oden. A discontinuous hp finite element method for diffusion problems: 1-D analysis. Technical Report 22, TICAM, 1997.Google Scholar
  3. 3.
    F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131: 267–279, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys., 138: 251–285, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    F. Bassi, S. Rebay, M. Savini, G. Mariotti, and S. Pedinotti. A high-order accurate discontinuous finite element method for inviscid and viscous turbo-machinery flows. In Proceedings of the Second European Conference on Turbo-machinery Fluid Dynamics and Thermodynamics, 1997. Antwerpen, Belgium.Google Scholar
  6. 6.
    C.E. Baumann An hp-adaptive discontinuous Galerkin method for computational fluid dynamics. PhD thesis, The University of Texas at Austin, 1997.Google Scholar
  7. 7.
    C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. To appear.Google Scholar
  8. 8.
    C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the Navier-Stokes equations. In 10th. International Conference on Finite Element in Fluids, 1998.Google Scholar
  9. 9.
    C.E. Baumann and J.T. Oden. A discontinuous hp finite element method for the solution of the Euler equation of gas dynamics. In 10th. International Conference on Finite Element in Fluids, 1998.Google Scholar
  10. 10.
    K.S. Bey and J.T. Oden. A Runge-Kutta discontinuous Galerkin finite element method for high speed flows. 10th. AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 24–27, 1991.Google Scholar
  11. 11.
    R. Biswas, K.D. Devine, and J. Flaherty. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 14: 255–283, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    G. Chavent and B. Cockburn. The local projection P° P1-discontinuousGalerkin finite element method for scalar conservation laws. M2 AN, 23: 565–592, 1989.Google Scholar
  13. 13.
    G. Chavent and G. Salzano. A finite element method for the 1D water flooding problem with gravity. J. Comput. Phys., 45: 307–344, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Z. Chen, B. Cockburn, C. Gardner, and J. Jerome. Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys., 117: 274–280, 1995.zbMATHCrossRefGoogle Scholar
  15. 15.
    Z. Chen, B. Cockburn, J. Jerome, and C.-W. Shu. Mixed-RKDG finite element method for the drift-diffusion semiconductor device equations. VLSI Design, 3: 145–158, 1995.CrossRefGoogle Scholar
  16. 16.
    P. Ciarlet. The finite element method for elliptic problems. North Holland, 1975.Google Scholar
  17. 17.
    B. Cockburn. An introduction to the discontinuous Galerkin method for convection-dominated problems. In Advanced numerical approximation of nonlinear hyperbolic equations, A. Quarteroni, editor, Lecture Notes in Mathematics, CIME subseries. Springer Verlag. To appear.Google Scholar
  18. 18.
    B. Cockburn and P.-A. Gremaud. A priori error estimates for numerical methods for scalar conservation laws. part I: The general approach. Math. Comp., 65: 533–573, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    B. Cockburn and P.A. Gremaud. Error estimates for finite element methods for nonlinear conservation laws. SIAM J. Numer. Anal., 33: 522–554, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    B. Cockburn, S. Hou, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp., 54: 545–581, 1990.MathSciNetzbMATHGoogle Scholar
  21. 21.
    B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys., 84: 90–113, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    B. Cockburn, M. Luskin, C.-W. Shu, and E. Süli. A priori error estimates for the discontinuous Galerkin method. in preparation.Google Scholar
  23. 23.
    B. Cockburn and C. Schwab. hp-error analysis for the local discontinuous Galerkin method. In preparation.Google Scholar
  24. 24.
    B. Cockburn and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. Math. Comp., 52: 411–435, 1989.MathSciNetzbMATHGoogle Scholar
  25. 25.
    B. Cockburn and C.W. Shu. The P1-RKDG method for two-dimensional Euler equations of gas dynamics. Technical Report 91–32, ICASE, 1991.Google Scholar
  26. 26.
    B. Cockburn and C.W. Shu. The Runge-Kutta local projection P1- discontinuous Galerkin method for scalar conservation laws. M2 AN, 25: 337–361, 1991.MathSciNetzbMATHGoogle Scholar
  27. 27.
    B. Cockburn and C.W. Shu. The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal., 35: 2440–2463, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys., 141: 199–224, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    M.G. Crandall and H. Ishiiand P.L. Lions. User’s guide to viscosity solutions of second-order partial differential equations. Bull. Amer. Math. Soc., 27: 1–67, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan, and M.S. Shephard. Load balancing for the parallel adaptive solution of partial differential equations. Appl. Numer. Math., 16: 157–182, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    K.D. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math., 20: 367–386, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    K.D. Devine, J.E. Flaherty, R.M. Loy, and S.R. Wheat. Parallel partitioning strategies for the adaptive solution of conservation laws. In I Babus’ka, W.D. Henshaw, J.E. Hoperoft, J.E. Oliger, and T. Tezduyar, editors, Modeling, mesh generation, and adaptive numerical methods for partial differential equations, volume 75, pages 215–242, 1995.Google Scholar
  33. 33.
    K.D. Devine, J.E. Flaherty, S.R. Wheat, and A.B. Maccabe. A massively parallel adaptive finite element method with dynamic load balancing. In Proceedings Supercomputing’93, pages 2–11, 1993.Google Scholar
  34. 34.
    K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal., 28: 43–77, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems II: Optimal error estimates in 1,12 and looloo. SIAM J. Numer. Anal., 32: 706–740, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems IV: A nonlinear model problem. SIAM J. Numer. Anal., 32: 1729–1749, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems V: Long time integration. SIAM J. Numer. Anal., 32: 1750–1762, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    K. Eriksson, C. Johnson, and V. Thomée. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO, Anal. Numér., 19: 611–643, 1985.zbMATHGoogle Scholar
  39. 39.
    R.S. Falk and G.R. Richter. Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. To appear.Google Scholar
  40. 40.
    J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Adaptive refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. Technical report, IMA Preprint Series # 1483, 1997.Google Scholar
  41. 41.
    J. Goodman and R. LeVeque. On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comp., 45: 15–21, 1985.MathSciNetzbMATHGoogle Scholar
  42. 42.
    P. Houston, C. Schwab, and E. Süli. Stabilized hp-finite element methods for hyperbolic problems. SIAM J. Numer. Anal. To appear.Google Scholar
  43. 43.
    C. Hu and C.-W. Shu. A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. To appear.Google Scholar
  44. 44.
    T. Hughes and A. Brook. Streamline upwind-Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32: 199–259, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    T. Hughes, L.P. Franca, M. Mallet, and A. Misukami. A new finite element formulation for computational fluid dynamics, I. Comput. Methods Appl. Mech. Engrg., 54: 223–234, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    T. Hughes, L.P. Franca, M. Mallet, and A. Misukami A new finite element formulation for computational fluid dynamics, II. Comput. Methods Appl. Mech. Engrg., 54: 341–355, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    T. Hughes, L.P. Franca, M. Mallet, and A. Misukami. A new finite element formulation for computational fluid dynamics, III. Comput. Methods Appl. Mech. Engrg., 58: 305–328, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    T. Hughes, L.P. Franca, M. Mallet, and A. Misukami A new finite element formulation for computational fluid dynamics, IV. Comput. Methods Appl. Mech. Engrg., 58: 329–336, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    T. Hughes and M. Mallet. A high-precision finite element method for shock-tube calculations. Finite Element in Fluids, 6: 339-, 1985.Google Scholar
  50. 50.
    P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal., 15: 912–928, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    G. Jiang and C.-W. Shu. On cell entropy inequality for discontinuous Galerkin methods. Math. Comp., 62: 531–538, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    C. Johnson and J. Pitkaranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46: 1–26, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    C. Johnson and J. Saranen. Streamline diffusion methods for problems in fluid mechanics. Math. Comp., 47: 1–18, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    C. Johnson and A. Szepessy. On the convergence of a finite element method for a non-linear hyperbolic conservation law. Math. Comp., 49: 427–444, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    C. Johnson, A. Szepessy, and P. Hansbo. On the convergence of shock capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comp., 54: 107–129, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    D.S. Kershaw, M.K. Prasad, and M.J. Shawand J.L. Milovich. 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous Galerkin method. Comput. Methods Appl. Mech. Engrg., 158: 81–116, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    D.A. Kopriva. A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations. Technical Report 97–66, Florida State UniversitySCRI, 1997.Google Scholar
  58. 58.
    P. LeSaint and P.A. Raviart. On a finite element method for solving the neutron transport equation. In C. de Boor, editor, Mathematical aspects of finite elements in partial differential equations, pages 89–145. Academic Press, 1974.Google Scholar
  59. 59.
    Q. Lin, N. Yan, and A.-H. Zhou. An optimal error estimate of the discontinuous Galerkin method. Journal of Engineering Mathematics, 13: 101–105, 1996.MathSciNetzbMATHGoogle Scholar
  60. 60.
    Q. Lin and A.-H. Zhou. Convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. Acta Math. Sci., 13: 207–210, 1993.MathSciNetzbMATHGoogle Scholar
  61. 61.
    W. B. Lindquist. Construction of solutions for two-dimensional Riemann problems. Comp. ê9 Maths. with Appls., 12: 615–630, 1986.MathSciNetzbMATHGoogle Scholar
  62. 62.
    W. B. Lindquist. The scalar Riemann problem in two spatial dimensions: Piecewise smoothness of solutions and its breakdown. SIAM J. Numer. Anal., 17: 1178–1197, 1986.MathSciNetzbMATHGoogle Scholar
  63. 63.
    I. Lomtev and G.E. Karniadakis. A discontinuous Galerkin method for the Navier-Stokes equations. Int. J. Num. Meth. Fluids. in press.Google Scholar
  64. 64.
    I. Lomtev and G.E. Karniadakis. A discontinuous spectral/ hp element Galerkin method for the Navier-Stokes equations on unstructured grids. In Proc. IMACS WC’97, 1997. Berlin, Germany.Google Scholar
  65. 65.
    I. Lomtev and G.E. Karniadakis. Simulations of viscous supersonic flows on unstructured hp-meshes. AIAA-97–0754, 1997. 35th. Aerospace Sciences Meeting, Reno.Google Scholar
  66. 66.
    I. Lomtev, C.W. Quillen, and G.E. Karniadakis. Spectral/hp methods for viscous compressible flows on unstructured 2D meshes. J. Comput. Phys., 144: 325–357, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    E.O. Macagno and T. Hung. Computational and experimental study of a captive annular eddy.,J.F.M., 28: 43–XX, 1967.Google Scholar
  68. 68.
    X. Makridakis and I. Babusska. On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal., 34: 389–401, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Newmann. A Computational Study of Fluid/Structure Interactions: Flow-Induced Vibrations of a Flexible Cable. PhD thesis, Princeton University, 1996.Google Scholar
  70. 70.
    J.T. Oden, No Babus’ka, and C.E. Baumann. A discontinuous hp finite element method for diffusion problems. J. Comput. Phys., 146: 491–519, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    S. Osher. Riemann solvers, the entropy condition and difference approximations. SIAM J. Numer. Anal., 21: 217–235, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulation. J. Comput. Phys., 79: 12–49, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    S. Osher and C.-W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal., 28: 907–922, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    C. Ozturan, H.L. deCougny, M.S. Shephard, and J.E. Flaherty. Parallel adaptive mesh refinement and redistribution on distributed memory computers. Comput. Methods Appl. Mech. Engrg., 119: 123–137, 1994.CrossRefGoogle Scholar
  75. 75.
    T. Peterson. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal., 28: 133–140, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73–479, Los Alamos Scientific Laboratory, 1973.Google Scholar
  77. 77.
    G.R. Richter. An optimal-order error estimate for the discontinuous Galerkin method. Math. Comp., 50: 75–88, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal., 29: 867–884, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    S.J. Sherwin and G. Karniadakis. Thetrahedral hp-finite elements: Algorithms and flow simulations. J. Comput. Phys., 124: 314–345, 1996.MathSciNetCrossRefGoogle Scholar
  80. 80.
    C.-W. Shu and S. Osher Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77: 439–471, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys., 83: 32–78, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    C.W. Shu. TVB uniformly high order schemes for conservation laws. Math. Comp., 49: 105–121, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    C.W. Shu. TVD time discretizations. SIAM J. Sci. Stat. Comput., 9: 1073–1084, 1988.zbMATHCrossRefGoogle Scholar
  84. 84.
    M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solution to incompressible two-phase flow. J. Comput. Phys., 114: 146–159, 1994.zbMATHCrossRefGoogle Scholar
  85. 85.
    C. Tong and G.Q. Chen. Some fundamental concepts about systems of two spatial dimensional conservation laws. Acta Mathematica Scientia (English Ed.), 6: 463–474, 1986.Google Scholar
  86. 86.
    C. Tong and Y.-X. Zheng. Two dimensional Riemann problems for a single conservation law. Trans. Amer. Math. Soc., 312: 589–619, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    J.R. Trujillo. Effective high-order vorticity-velocity formulation. PhD thesis, Princeton University, 1997.Google Scholar
  88. 88.
    B. van Leer. Towards the ultimate conservation difference scheme, II. J. Comput. Phys., 14: 361–376, 1974.zbMATHCrossRefGoogle Scholar
  89. 89.
    B. van Leer. Towards the ultimate conservation difference scheme, V. J. Comput. Phys., 32: 1–136, 1979.CrossRefGoogle Scholar
  90. 90.
    D. Wagner. The Riemann problem in two space dimensions for a single conservation law. SIAM J. Math. Anal., 14: 534–559, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    T.C. Warburton, I. Lomtev, R.M. Kirby, and G.E. Karniadakis A discontinuous Galerkin method for the Navier-Stokes equations in hybrid grids. In M. Hafez and J.C. Heirich, editors, 10th. International Conference on Finite Elements in Fluids, Tucson, Arizona, 1998.Google Scholar
  92. 92.
    P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54: 115–173, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    A.-H. Zhou and Q. Lin. Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation. Acta Math. Sci., 14: 90–94, 1994.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Bernardo Cockburn
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations