The TEG-3 Geopotential Model

  • B. D. Tapley
  • C. K. Shum
  • J. C. Ries
  • S. R. Poole
  • P. A. M. Abusali
  • S. V. Bettadpur
  • R. J. Eanes
  • M. C. Kim
  • H. J. Rim
  • B. E. Schutz
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 117)

Abstract

A new solution for the static geopotential, TEG-3, complete to 70×70 in spherical harmonics, has been obtained. The solution represents one of the latest efforts to improve the Earth’s gravity model. The solution was obtained by combining inhomogeneous satellite and in situ data sets, and by simultaneously estimating the relative weights for individual satellite data sets. Data from over 20 satellites and terrestrial surface gravity data were used in the latest solution. The satellite data include groundbased satellite laser and radiometric (Doris and Tranet) tracking data, spaceborne GPS, and radar altimeter measurements. Analysis indicates that TEG-3 provides an incremental improvement in overall satellite orbit determination when compared with recent models, including JGM-3, GRIM4C4, and EGM96. In particular, notable improvement has been achieved for TEG-3 in reducing geographically-correlated gravity errors for orbit determination of altimetric satellites (Geosat and ERS-1). Error analysis indicates that there is no notable improvement in marine geoid accuracy in TEG-3 as compared to JGM-3, while the EGM-96 model represents an improvement in the marine geoid accuracy as indicated by comparing with ground-truth measurements (Levitus 94 hydrography) and mean topography from numerical ocean circulation model simulations (POCM_4B).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, K., Application of singular value decomposition to gravity field model development using satellite data, CSR-96–05, Center for Space Research, The University of Texas at Austin, 1996.Google Scholar
  2. Eanes, R. J., and M. M. Watkins, The CSR95L01 solution, in IERS Annual Report for 1994, Int. Earth Rotation Serv., Obs. de Paris, 1995.Google Scholar
  3. Kozel, B., Dual-satellite altimeter crossover measurements for precise orbit determination, CSR-95–4, Center for Space Research, The University of Texas at Austin, 1995.Google Scholar
  4. Lerch, F. J., et al., A geopotential model for the Earth from satellite tracking, altimeter, and surface gravity observations: GEM-T3, J. Geophys. Res., 99, 2815–2839, 1994.CrossRefGoogle Scholar
  5. Lemoine, F. G., et. al., The development of the NASA GSFC and DMA joint geopotential model, Proc. GraGeoMar96 Meeting, Tokyo, September 1996.Google Scholar
  6. Levitus, S., R. Burgett, and T. Boyer, World ocean Atlas 1994, Vol. 3, Salinity,Vol. 4, Temperature, NOAA Atlas NESDIS 3–4,U.S. Dep. of Comm., Washington, D. C., 1994.Google Scholar
  7. Marsh, J. G., et al., A new gravitational model for the Earth from satellite tracking data: GEM-T1, J. Geophys. Res., 93(B6), 6169–6215, June 10, 1988.Google Scholar
  8. National Research Council, A Strategy for Earth Science from Space in the 1980’s, Part I: Solid Earth and Oceans, Space Science Board Committee on Earth Sciences, National Academy Press, Washington, D. C., 1982.Google Scholar
  9. NASA, Geophysical and geodetic requirements for global gravity field measurements,Report of Gravity Workshop, 1987–2000, 1987.Google Scholar
  10. NASA, Space science in the twenty-first century: Imperatives for the decades 1995— 2015,Space Science Board, Mission to Planet Earth, 1988. NASA, Solid Earth sciences in the 1990s,The Coolfont Report, Vol. 1–3, 1991.Google Scholar
  11. Muller, I., and S. Zerbini (Ed.), The interdisciplinary role of space geodesy, The Erice Report, Springer-Verlag, 1989.Google Scholar
  12. Nerem, R. S., B. D. Tapley, and C. K. Shum, A general ocean circulation model determined in a simultaneous solution with the Earth’s gravity field, Proc. International Association of Geodesy Symposia 104, H. Sunkel and T. Baker (Eds. ), Springer-Verlag, 1990.Google Scholar
  13. Nerem, R. S., et al., Gravity model development for TOPEX/POSEIDON: Joint Gravity Model 1 and 2, J. Geophys. Res., 99 (C12), 24421–24447, 1994.CrossRefGoogle Scholar
  14. Powell, E., Precise GPS-based tracking of remote sensing satellites, CSR-92–3, Center for Space Research, The University of Texas at Austin, 1992.Google Scholar
  15. Rapp, R. H., Y. M. Wang, and N. K. Pavlis, The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models, Rep. 410, Dep. of Geod. Sci. and Surv., Ohio State Univ., Columbus, 1991.Google Scholar
  16. Reigber, C., et. al., GRIM4–S4/C4 global gravity field model and recent extensions exploitingGoogle Scholar
  17. GFZ-1 and ERS-2/PRARE tracking data, Spring AGU Meeting, Baltimore, MD, May, 1996.Google Scholar
  18. Ries, J. C., Comparison of recent geopotential models using satellite orbit fits, IGS Bulletin, in preparation, 1997.Google Scholar
  19. Rim, H. J., TOPEX orbit determination using GPS tracking system, CSR-92–3, Center for Space Research, The University of Texas at Austin, 1992.Google Scholar
  20. Rim, H. J., B. E. Schutz, P.A.M. Abusali, Y. S. Nam, S. R. Poole, J. C. Ries, C. K. Shum, and B. D. Tapley, The contribution of GPS data to modern gravity model improvement, Spring AGU Meeting, Baltimore, May, 1996.Google Scholar
  21. Scharroo, R., P. Visser, and G. Mets, TOPEX-class orbits for the ERS satellites, submitted to Jl. Geophys. Res.,1997.Google Scholar
  22. Shum, C. K., Altimeter methods for satellite geodesy, CSR-83–2, Center for Space Research, The University of Texas at Austin, 1983.Google Scholar
  23. Shum, C. K., B. D. Tapley, D. N. Yuan, J. C. Ries, and B. E. Schutz, An improved model for the Earth’s gravity field, Gravity, Gradiometry and Gravimetry, pp. 97–108, Springer-Verlag, New York, 1990.Google Scholar
  24. Shum, C. K., B. D. Tapley, G. H. Kruizinga, J. C. Ries, T. Urban, R. Benada, B. Berwin, D. Collins, and J. Lillibridge, Verification of ERS-1 radar altimeter data product and orbit analysis, American Geophysical Union Fall Meeting, San Francisco, CA, December 11–15, 1995.Google Scholar
  25. Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch, How well does a 1/4° global circulation model simulate large-scale oceanic observations? J1. Geophys. Res., 101(C10), 25,779–25,811, November 15, 1996.Google Scholar
  26. Tapley, B. D, Statistical orbit determination theory, Recent Advances in Dynamical Astronomy, 396–425, B. D. Tapley and V. Szebehely, Eds., D. Reidel Publ. Co., Holland, 1973.Google Scholar
  27. Tapley, B. D., C. K. Shum, D. N. Yuan, J. C. Ries, R. J. Eanes, M. M. Watkins, and B. E. Schutz, The University of Texas Earth gravitational model, Proc. IUGG XX General Assembly, Vienna, Austria, August 1991.Google Scholar
  28. Tapley, B. D., H. J. Rim, J. C. Ries, B. E. Schutz, and C. K. Shum, The use of GPS data for global gravity field determination, Proc. IUGG XXI General Assembly, Boulder, Colorado, July 2–14, 1995.Google Scholar
  29. Tapley, B. D., et al., The JGM-3 Geopotential Model, J. Geophys. Res., 101(B12), 28,02928,049, December 10, 1996.Google Scholar
  30. Wahr, J., Time-dependent gravity: what might a dedicated gravity mission tell us about the Earth, Fall AGU Meeting, San Francisco, CA, December, 1996.Google Scholar
  31. Wunsch, C., Requirements on marine geoid accuracy for significant improvement in knowledge of the ocean circulation, Spring AGU Meeting, Baltimore, MD, May, 1996.Google Scholar
  32. Yuan, D. N., C. K. Shum and B. D. Tapley, Gravity field determination and error assessment techniques, presented at the Chapman Conference for Progress in the Determination of the Earth’s Gravity Field, Ft. Lauderdale, Florida, September 12–16, 1988.Google Scholar
  33. Yuan, D. N., The determination and error assessment of the Earth’s gravity field, CSR-91–1, Center for Space Research, The University of Texas at Austin, May 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • B. D. Tapley
    • 1
  • C. K. Shum
    • 1
  • J. C. Ries
    • 1
  • S. R. Poole
    • 1
  • P. A. M. Abusali
    • 1
  • S. V. Bettadpur
    • 1
  • R. J. Eanes
    • 1
  • M. C. Kim
    • 1
  • H. J. Rim
    • 1
  • B. E. Schutz
    • 1
  1. 1.Center for Space ResearchThe University of Texas at AustinAustinUSA

Personalised recommendations