Advertisement

GWAI-81 pp 1-17 | Cite as

Models and Structures in Image Processing

  • B. Radig
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 47)

Abstract

“AI is the ‘study of how to use knowledge to achieve intelligent action, which often implies selection from a large space of alternatives’. Vision and speech are two problems which require the application of diverse sources of knowledge, including both symbolic knowledge and knowledge of the signal space, to the interpretation of a noisy signal (image or speech waveform). AI systems which solve vision and speech problems differ from purely symbolic problem solving systems since they must explicitly deal with errors, noise, and uncertainty in the input data.” [REDDY ROSENFELD 79]

Keywords

Computer Vision System Symbolic Description Compatibility Graph Semantic Segmentation Relaxation Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAIRD KELLY 74.
    M. L. Baird, M. D. Kelly: “Recognizing Objects by Rules of Inference on Sequentially Thresholded Gray-Level Pictures”, Comp. Graphics Image Proc. 3 (1974) 1–22.CrossRefGoogle Scholar
  2. BARROW ET AL. 72
    H. G. Barrow, A. P. Ambler, R. M. Burstall: “Some Techniques for Recognizing Structures in Pictures”, in Frontiers of Pattern Recognition, S. Watanabe (ed.), Academic Press, New York 1972.Google Scholar
  3. BARROW BURSTALL 76.
    H. G. Barrow, R. M. Burstall: “Subgraph Isomorphism, Matching Relational Structures and Maximal Cliques”, Information Proc. Letters 4 (1976) 83–84.MATHCrossRefGoogle Scholar
  4. BARROW TENENBAUM 78.
    H G. Barrow, J. M. Tenenbaum: “Recovering Intrinsic Scene Characteristics from Images”, in Computer Vision Systems, A. R. Hanson, E. M. Riseman (eds.), Academic Press, New York 1978.Google Scholar
  5. BERTELSMEIER HILLE 79.
    R. Bertelsmeier, G. Hille: “Anwendungen von Bildanalysetechniken zur automatischen Sichtkontrolle von Bauteilen im Automobilbau”, in Angewandte Szenenanalyse, J. P. Foith (ed.), Informatik Fachberichte 20, Springer Berlin-Heidelberg-New York 1979.CrossRefGoogle Scholar
  6. BERTELSMEIER RADIG 77a.
    R. Bertelsmeier, B. Radig: “Kontextunterstützte Analyse von Szenen mit bewegten Objecten”, GI/NTG Fachtagung Digitale Bildverarbeitung, H.-H. Nagel (ed.), München Mar. 28–30, 1977, Informatik Fachberichte 8, 101–128, Springer Berlin-Heidelberg-New York 1977.Google Scholar
  7. BERTELSMEIER RADIG 77b.
    R. Bertelsmeier, B. Radig: “Context Guided Analysis of Scenes With Moving Objects”, Report IFI-HH-B-41/77, Fachbereich Informatik, Univ. Hamburg, Feb. 1977.Google Scholar
  8. BOHM ET AL. 80
    M. Böhm, U. Obermöller, K. H. Höhne: “Determination of Heart Dynamics from X-Ray and Ultrasound Image Sequences”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 403–408.Google Scholar
  9. BRADY 81.
    M. Brady: “Artificial Intelligence Approaches to Image Understanding”, Nato Adv. Study Inst. on Pattern Recognition Theory and Applications, Oxford, March 29 — April 11, 1981.Google Scholar
  10. BRENNECKE ET AL. 80
    R. Brennecke, H. J. Hahne, P. H. Heintzen: “A Multiprocessor-System for the Acquisition and Analysis of Video Image Sequences”, in Erzeugung und Analyse von Bildern und Strukturen, S. J. Pöppl, H. Platzer (eds.), Informatik Fachberichte 29, Springer Berlin-Heidelberg-New York 1980.CrossRefGoogle Scholar
  11. BROOKS ET AL. 79
    R. A. Brooks, R. Greiner, T. O. Binford: “The ACRONYM Model-Based Vision System”, IJCAI-79, Tokyo, Aug. 20–23, 1979, 105–113.Google Scholar
  12. CHENG HUANG 80.
    J.-K. Cheng, T. S. Huang: “Algorithms for Matching Relational Structures and their Applications to Image Processing”, Report TR-EE 80–53, School of Electr. Engg., Purdue Univ., Dec. 1980.Google Scholar
  13. DAVIS 75.
    L. S. Davis: “A Survey of Edge Detection Techniques”, Comp. Graphics Image Proc. 4 (1975) 248–270.CrossRefGoogle Scholar
  14. DRESCHLER NAGEL 81.
    L. Dreschler, H.-H. Nagel: “On the Frame-to-Frame Correspondence between Greyvalue Characteristics in the Images of Moving Objects”, this volume.Google Scholar
  15. EHRICH FOITH 78.
    R. W. Ehrich, J. P. Foith: “Topology and Semantics of Intensity Arrays”, in Computer Vision Systems, A. R. Hanson, E. M. Riseman (eds.), Academic Press, New York 1978.Google Scholar
  16. FU 78.
    K. S. Fu: “Recent Advantages in Syntactic Pattern Recognition”, IJCPR-78, Kyoto, Nov. 7–10, 1978, 95–105.Google Scholar
  17. FU MUI 81.
    K. S. Fu, J. K. Mui: “A Survey on Image Segmentation”, Pattern Recognition 13 (1981) 3–16.MathSciNetCrossRefGoogle Scholar
  18. HANSON RISEMAN 75.
    A. R. Hanson, E. M. Riseman: “The Design of a Semantically Directed Vision Processor”, COINS Technical Report 75C-l, Univ. of Massachusets, 1975.Google Scholar
  19. HANSON RISEMAN 78.
    A. R. Hanson, E. M. Riseman: “Segmentation of Natural Scenes”, in Computer Vision Systems, A. R. Hanson, E. M. Riseman (eds.), Academic Press, New York 1978.Google Scholar
  20. HARA ET AL. 80
    Y. Hara, K. Okamoto, T. Hamada, N. Akiyama: “Automatic Visual Inspection of LSI Photomasks”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 273–279.Google Scholar
  21. HARALICK 78.
    R. M. Haralick: “Scene Analysis, Arrangements, and Homomorphisms”, in Computer Vision Systems, A. R. Hanson, E. M. Riseman (eds.), Academic Press, New York 1978.Google Scholar
  22. HARALICK 80.
    R. M. Haralick: “Edge and Region Analysis for Digital Image Data”, Comp. Graphics Image Proc. 12 (1980) 60–79.CrossRefGoogle Scholar
  23. HART ET AL. 68
    P. E. Hart, N. J. Nilsson, B. Raphael: “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”, IEEE Trans. Sys. Sci. Cyber. SSC-4 (1968) 100–107, and corrections in SIGART Newsletter No. 37, Dec. 1972, 28–29; see also D. Gelperin: “On the Optimality of A*”, Artificial Intelligence 8 (1977) 69–76.CrossRefGoogle Scholar
  24. HEINTZEN BURSCH 78.
    P. H. Heintzen, J. H. Bürsch (eds.): “Roentgen-Video-Techniques for Dynamic Studies of Structure and Function of the Heart and Circulation”, Georg Thieme Verlag, Stuttgart 1978.Google Scholar
  25. HERMAN 80.
    G. T. Herman: “Image Reconstruction from Projections”, Academic Press, New York 1980.MATHGoogle Scholar
  26. HEYGSTER 80.
    G. Heygster: “Two-Dimensional Rank Filters — Deterministic and Spectral Properties”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 1165–1167.Google Scholar
  27. HILLE 81.
    G. Hille: “Methoden und Modelle in der Bildsegmentation — Eine Ubersicht”, Fachbereich Informatik, Univ. Hamburg, in preparation.Google Scholar
  28. HOLDERMANN KAZMIERCZAK 72.
    F. Holdermann, H. Kazmierczak: “Preprocessing of Gray Scale Pictures”, Comp. Graphics Image Proc. 1 (1972) 66–80.CrossRefGoogle Scholar
  29. HORN 77.
    B. K. P. Horn: “Understanding Image Intensities”, Artificial Intelligence 8 (1977) 201–231.MATHCrossRefGoogle Scholar
  30. JACOBUS ET AL. 80
    C. J. Jacobus, R. T. Chien, J. M. Selander: “Motion Detection and Analysis of Matching Graphs of Intermediate-Level Primitives”, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2 (1980) 495–510.Google Scholar
  31. JAIN NAGEL 79.
    R. Jain, H.-H. Nagel: “On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes”, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1 (1979) 206–214.CrossRefGoogle Scholar
  32. KANADE 80.
    T. Kanade: “Region Segmentation: Signal vs Semantics”, Comp. Graphics Image Proc. 13 (1980) 279–297.MathSciNetMATHCrossRefGoogle Scholar
  33. KANAL 79.
    L. N. Kanal: “Problem-Solving Models and Search Strategies for Pattern Recognition”, IEEE Trans. Pattern Analysis Machine Intell. PAMI-1 (1979) 193–201.CrossRefGoogle Scholar
  34. KELLY 70.
    M. D. Kelly: “Visual Identification of Peoples by Computer”, Memo AI-130, Comp. Sc. Dept. Stanford Univ. 1970.Google Scholar
  35. KRAASCH ZACH 79.
    R. Kraasch, W. Zach: “Dreidimensionale Beschreibung einfacher bewegter Gegenstände”, Diploma thesis, Fachbereich Informatik, Univ. Hamburg, July 1979.Google Scholar
  36. LEVINE 78.
    M. D. Levine: “A Knowledge-Based Computer Vision System”, in Computer Vision Systems, A. R. Hanson, E. M. Riseman (eds.), Academic Press, New York 1978.Google Scholar
  37. MARR 75.
    D. Marr: “Early Processing of Visual Information”, Memo AI-340, MIT Cambridge /MA, Dec. 1975, and Phil. Trans. Royal Society, Series B, 275 (1976) 483–524.Google Scholar
  38. MARTELLI 76.
    A. Martelli: “An Application of Heuristic Search Methods to Edge and Contour Detection”, C.ACM 19 (1976) 73–83.MATHCrossRefGoogle Scholar
  39. MOHR HATON 76.
    R. Mohr, J.-P. Haton: “A Parsing Algorithm for Imperfect Patterns and its Application to Speech and Image Recognition”, talk given at IJCPR-76, published as Report 76-R-018, Univ. de Nancy I, 1976.Google Scholar
  40. MOHR MASINI 80.
    R. Mohr, G. Masini: “Knowledge Directed Recognition: A Syntactical Approach”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 337–339.Google Scholar
  41. NAGAO MATSUYAMA 79.
    M. Nagao, T. Matsuyama: “Edge Preserving Smoothing”, Comp. Graphics Image Proc. 9 (1979) 394–407.CrossRefGoogle Scholar
  42. NAGEL 79.
    H.-H. Nagel: “Uber die Repräsentation von Wissen zur Auswertung von Bildern”, in Angewandte Szenenanalyse, J. P. Foith (ed.), Informatik Fachberichte 20, Springer Berlin-Heidelberg-New York 1979.CrossRefGoogle Scholar
  43. NAGEL 81.
    H.-H. Nagel: “Image Sequence Analysis: What Can we Learn from Applications?”, to appear in Image Sequence Analysis, T. S. Huang (ed.) Springer Berlin-Heidelberg-New York 1981; and Report IFI-HH-M-79/80, Fachbereich Informatik, Univ. Hamburg, 1980.Google Scholar
  44. NEVATIA PRICE 78.
    R. Nevatia, K. Price: “Locating Structures in Areal Images”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 686–690.Google Scholar
  45. NEWELL ERNST 65.
    A. Newell, G. Ernst: “The Search for Generality”, Proc. IFIP Congress 65, W. A. Kalenich (ed.), Spartan Books, Washington D.C., and Macmillan, London, 1965.Google Scholar
  46. NIEMANN 80.
    H. Niemann: “Hierarchical Graphs in Pattern Analysis”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 213–216; see also “Zur Repräsentation von Kontrollstrukturen und Wissen in der Musteranalyse”, in Erzeugung und Analyse von Bildern und Strukturen, S. J. Pö l, H. Platzer (eds.),), Informatik Fachberichte 29, Springer Berlin-Heidelberg-New York 1980.Google Scholar
  47. NILSSON 71.
    N. J. Nilsson: “Problem-Solving Methods in Artificial Intelligence”, McGraw Hill, New York 1971.Google Scholar
  48. OHTA ET AL. 80
    Y. I. Ohta, T. Kanade, T. Sakai: “Color Information for Region Segmentation”, Comp. Graphics Image Proc. 13 (1980) 222–241.CrossRefGoogle Scholar
  49. ONOE ET AL. 80
    M. Onoe, K. Preston, A. Rosenfeld (eds.): “Real-Time Medical Image Processing”, Plenum Press, New York 1980.Google Scholar
  50. PREPARATA RAY 72.
    F. P. Preparata, S. R. Ray: “An Approach to Artificial Nonsymbolic Cognition”, Information Sciences 4 (1972) 65–86.MATHGoogle Scholar
  51. RADIG 78.
    B. Radig: “Parameterized Region Extraction for the Description of Moving Objects”, Proc. AISB/GI Conf. on Artificial Intelligence, Hamburg, July 18–20, 1978.Google Scholar
  52. RADIG NAGEL 80.
    B. Radig, H.-H. Nagel: “Evaluation of Image Sequences: A Look Beyond Applications”, Nato Adv. Study Inst. on Digital Image Proc. and Anal., Bonas, France, June 23 — July 4, 1980, published by INRIA, to be published by Reidel.Google Scholar
  53. RADIG ET AL. 80
    B. Radig, R. Kraasch, W. Zach: “Matching Symbolic Descriptions for 3-D Reconstruction of Simple Moving Objects”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 1081–1084.Google Scholar
  54. RADIG 81.
    B. Radig: “Image Region Extraction of Moving Objects”, to appear in Image Sequence Analysis, T. S. Huang (ed.), Springer Berlin-Heidelberg-New York 1981.Google Scholar
  55. REDDY ROSENFELD 79.
    R. Reddy, A. Rosenfeld: Final Report on Workshop on Control Structures and Knowledge Representation for Image and Speech Understanding, April 3–4, 1979, Center for Adult Education, Univ. of Maryland, College Park.Google Scholar
  56. RISEMAN ARBIB 77.
    E. M. Riseman, M. A. Arbib: “Segmentation of Static Scenes”, Comp. Graphics Image Proc. 6 (1977) 221–276.CrossRefGoogle Scholar
  57. ROSENFELD ET AL. 76
    A. Rosenfeld, R. A. Hummel, S. W. Zucker: “Scene Labeling by Relaxation Operation”, IEEE Trans. System, Man, Cybernetics SMC-6 (1976) 420–433Google Scholar
  58. ROSENFELD KAK 76.
    A. Rosenfeld, A. C. Kak: “Digital Picture Processing”, Academic Press, New York 1976.CrossRefGoogle Scholar
  59. SHANI 80.
    U. Shani: “A 3-D Model-Driven System for the Recognition of Abdominal Anatomy from CT Scans”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 585–590.Google Scholar
  60. SHAPIRO HARALICK 80.
    L. G. Shapiro, R. M. Haralick: “Algorithms for Inexact Matching”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 202–207.Google Scholar
  61. SHNEIER 79.
    M. O. Shneier: “A Compact Relational Structure Representation”, IJCAI-79, Tokyo, Aug. 20–23, 1979, 818–826.Google Scholar
  62. TENENBAUM BARROW 76.
    J. M. Tenenbaum, H. G. Barrow: “IGS: A Paradigm for Integrating Image Segmentation and Interpretation”, in Pattern Recognition and Artificial Intelligence, C. H. Chen (ed.), Academic Press, New York 1976Google Scholar
  63. TENENBAUM BARROW 76.
    J. M. Tenenbaum, H. G. Barrow: “Experiments in Interpretation Guided Segmentation”, Artificial Intelligence 8 (1977) 241–274.CrossRefGoogle Scholar
  64. TRIENDL 78.
    E. E. Triendl: “How to Get the Edge into the Map”, IJCPR-78, Kyoto, Nov. 7–10, 1978, 946–950.Google Scholar
  65. TROPF 80.
    H. Tropf: “Analysis-By-Synthesis Search for Semantic Segmentation — Applied to Workpiece Recognition”, ICPR-80, Miami Beach, Dec. 1–4, 1980, 1165–1167.Google Scholar
  66. WALTZ 75.
    D. Waltz: “Generating Semantic Descriptions from Drawings of Scenes with Shadows”, in The Psychology of Computer Vision, P. H. Winston (ed.), McGraw Hill, New York 1975.Google Scholar
  67. WINSTON 75.
    P. H. Winston: “Learning Structural Descriptions from Examples”, in The Psychology of Computer Vision, P. H. Winston (ed.), McGraw Hill, New York 1975.Google Scholar
  68. WOOD 76.
    E. H. Wood: “New Horizons for Study of the Cardiopulmonary and Circulatory Systems”, Chest 69 (1976) 394–408.CrossRefGoogle Scholar
  69. YOU FU 79.
    K. C. You, K. S. Fu: “A Syntactic Approach to Shape Recognition Using Attributed Grammars”, IEEE Trans. System, Man, Cybernetics SMC-9 (1979) 334–344.Google Scholar
  70. ZUCKER ET AL. 75
    S. W. Zucker, A. Rosenfeld, L.-S. Davis: “General Purpose Models: Expectations About the Unexpected”, IJCAI-75, Tbilisi, Sept. 3–8, 1975, 716–721.Google Scholar
  71. ZUCKER 76.
    S. W. Zucker: “Region Growing: Childhood and Adolescence”, Comp. Graphics Image Proc. 5 (1976) 382–393.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • B. Radig
    • 1
  1. 1.Fachbereich InformatikUniversität HamburgGermany

Personalised recommendations