Advertisement

Image Quilting for Histological Image Synthesis

  • Daniel BugEmail author
  • Gregor Nickel
  • Anne Grote
  • Friedrich Feuerhake
  • Eva Oswald
  • Julia Schüler
  • Dorit Merhof
Conference paper
  • 54 Downloads
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Applications in digital histopathology often require costly expert labels to train modern machine learning algorithms. We introduce an adaptation of the Image Quilting algorithm for texture synthesis that is utilized to virtually multiply the tissues and labels. Potential applications are augmentation in neural network training and quality control in intra-rater experiments. We evaluate this method in a subjective expert trial and a quantitative augmented learning scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Apou G, Feuerhake F, Forestier G, et al. Synthesizing whole slide images. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE; 2015. p. 154–159.Google Scholar
  2. 2.
    Glotsos D, Kostopoulos S, Ravazoula P, et al. Image quilting and wavelet fusion for creation of synthetic microscopy nuclei images. Comput Methods Programs Biomed. 2018;162:177–186.Google Scholar
  3. 3.
    Hou L, Agarwal A, Samaras D, et al. Robust histopathology image analysis: to label or to synthesize? In: Proc IEEE CCVPR; 2019. p. 8533–8542.Google Scholar
  4. 4.
    Efros AA, Freeman WT. Image quilting for texture synthesis and transfer. In: Proc of the 28th annual conference on CGIT. ACM; 2001. p. 341–346.Google Scholar
  5. 5.
    Magee D, Treanor D, Crellin D, et al. Colour normalisation in digital histopathology images. In: Proc Optical Tissue Image analysis in Microscopy, Histopathology and Endoscopy (MICCAI Workshop). vol. 100. Citeseer; 2009. .Google Scholar
  6. 6.
    Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959;1(1):269–271.Google Scholar
  7. 7.
    Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: PROC MICCAI. Springer; 2015. p. 234–241.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Daniel Bug
    • 1
    Email author
  • Gregor Nickel
    • 1
  • Anne Grote
    • 2
  • Friedrich Feuerhake
    • 2
    • 3
  • Eva Oswald
    • 4
  • Julia Schüler
    • 4
  • Dorit Merhof
    • 1
  1. 1.Institute of Imaging and Computer VisionRWTH Aachen UniversityAachenDeutschland
  2. 2.Institute for PathologyHannover Medical SchoolHannoverDeutschland
  3. 3.Institute for NeuropathologyUniversity Clinic Freiburg im BreisgauFreiburg im BreisgauDeutschland
  4. 4.Charles River Discover Research Services Germany GmbHFreiburg im BreisgauDeutschland

Personalised recommendations