Advertisement

The Relationship between General Intelligence and Media Use among University Students

  • J. JitomirskiEmail author
  • Olga Zlatkin-Troitschanskaia
  • S. Schipolowski
Chapter
  • 22 Downloads

Abstract

Students’ information selection process might be influenced by their choice of media sources, their learning contexts and motivation to use certain media as well as their general intelligence, which is crucial for information processing. This study examines the relationship between the general fluid intelligence and the media use of 709 first-year business & economics students from 44 universities in Germany for two different learning purposes: informing oneself about B&E topics and preparing for lectures and exams. Accordingly, the motivator information seeking is divided into curiosity driven and goal driven information seeking. Three types of media sources were included: common news sources, specialized economics sources and university sources. Results from regression analyses and group comparisons indicate that the frequency of media use correlates with general fluid intelligence for some common news sources and specialized economics sources, for example, tabloids and economic newspapers, even after controlling for several sociodemographic variables including gender, age, and parents’ educational background.

Keywords

Media use general fluid intelligence general intelligence cognitive ability higher education uses and gratifications theory knowledge acquisition business and economics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ackerman, P. L., & Beier, M. E. (2003). Trait complexes, cognitive investment and domain knowledge. In R. J. Sternberg & E. L. Grigorenko (Eds.), The psychology of abilities, competencies, and expertise (pp. 1–30). Cambridge: Cambridge Univ. Press.Google Scholar
  2. Arteaga Sánchez, R., Cortijo, V., & Javed, U. (2014). Students’ perceptions of Facebook for academic purposes. Computers & Education, 70, 138–149. https://doi.org/10.1016/j. compedu.2013.08.012Google Scholar
  3. Basera, B. (2019). 10 Best Apps That Track And Limit Social Media Usage.Google Scholar
  4. Beier, M. E., & Ackerman, P. L. (2001). Current-events knowledge in adults: An investigation of age, intelligence, and nonability determinants. Psychology and Aging, 16(4), 615–628. https://doi.org/10.1037/0882–7974.16.4.615Google Scholar
  5. Blom, N., van der Zanden, R., Buijzen, M., & Scheepers, P. (2016). Media Exposure and Health in Europe: Mediators and Moderators of Media Systems. Social Indicators Research, 126, 1317–1342. https://doi.org/10.1007/s11205–015-0933–6Google Scholar
  6. Bonfadelli, H., Bucher, P., & Piga, A. (2007). Use of old and new media by ethnic minority youth in Europe with a special emphasis on Switzerland. Communications, 32(2), 459. https://doi.org/10.1515/COMMUN.2007.010Google Scholar
  7. Cain, N., & Gradisar, M. (2010). Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Medicine, 11(8), 735–742. https://doi.org/10.1016/j. sleep.2010.02.006Google Scholar
  8. Carroll, J. B. (1994). Cognitive abilities: Constructing a theory from data. In D. K. Detterman (Eds.), Current topics in human intelligence ; vol. 4: Theories in intelligence (pp. 43–63). Noorwood, NJ: Ablex.Google Scholar
  9. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22. https://doi.org/10.1037/h0046743CrossRefGoogle Scholar
  10. Ciampaglia, G. (2018). The Digital Misinformation Pipeline. In O. Zlatkin-Troitschanskaia, G. Wittum, & A. Dengel (Eds.), Positive Learning in the Age of Information (pp. 413– 422). Wiesbaden: Springer.Google Scholar
  11. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: L. Erlbaum Associates.Google Scholar
  12. Colom, R., & Flores-Mendoza, C. E. (2007). Intelligence predicts scholastic achievement irrespective of SES factors: Evidence from Brazil. Intelligence, 35(3), 243–251. https://doi.org/10.1016/j.intell.2006.07.008CrossRefGoogle Scholar
  13. Dalton, J. C., & Crosby, P. C. (2013). Digital Identity: How Social Media Are Influencing Student Learning and Development in College. Journal of College and Character, 14(1), 1–4. https://doi.org/10.1515/jcc-2013–0001Google Scholar
  14. Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21. https://doi.org/10.1016/j.intell.2006.02.001CrossRefGoogle Scholar
  15. Ellis, P. D. (2010). The Essential Guide to Effect Sizes. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511761676Google Scholar
  16. Fletcher, R., & Park, S. (2017). The Impact of Trust in the News Media on Online News Consumption and Participation. Digital Journalism, 5(10), 1281–1299. https://doi.org/10.1080/21670811.2017.1279979CrossRefGoogle Scholar
  17. Go, E., You, K. H., Jung, E., & Shim, H. (2016). Why do we use different types of websites and assign them different levels of credibility? Structural relations among users’ motives, types of websites, information credibility, and trust in the press. Computers in Human Behavior, 54, 231–239. https://doi.org/10.1016/j.chb.2015.07.046CrossRefGoogle Scholar
  18. Gojkov, G., Stojanović, A., & Rajić, A. G. (2015). Critical Thinking of Students – Indicator of Quality in Higher Education. Procedia – Social and Behavioral Sciences, 191, 591–596. https://doi.org/10.1016/j.sbspro.2015.04.501CrossRefGoogle Scholar
  19. Grabe, M. E., Kamhawi, R., & Yegiyan, N. (2009). Informing Citizens: How People with Different Levels of Education Process Television, Newspaper, and Web News. Journal of Broadcasting & Electronic Media, 53(1), 90–111. https://doi.org/10.1080/08838150802643860CrossRefGoogle Scholar
  20. Gustafsson, J.-E. (1984). A unifying model for the structure of intellectual abilities. Intelligence, 8(3), 179–203. https://doi.org/10.1016/0160–2896(84)90008–4Google Scholar
  21. Hambrick, D. Z., Meinz, E. J., & Oswald, F. L. (2007). Individual differences in current events knowledge: Contributions of ability, personality, and interests. Memory & Cognition, 35(2), 304–316. https://doi.org/10.3758/BF03193451CrossRefGoogle Scholar
  22. Hambrick, D. Z., Pink, J. E., Meinz, E. J., Pettibone, J. C., & Oswald, F. L. (2008). The roles of ability, personality, and interests in acquiring current events knowledge: A longitudinal study. Intelligence, 36(3), 261–278. https://doi.org/10.1016/j.intell.2007.06.004CrossRefGoogle Scholar
  23. Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419. https://doi.org/10.1177/0956797613492984CrossRefGoogle Scholar
  24. Heidi, J. (2018). Taking a Stand in the Post-Truth Era. Pakistan Journal of Information Management & Libraries, 20, i.Google Scholar
  25. Huston, A. C., Wright, J. C., Marquis, J., & Green, S. B. (1999). How young children spend their time: Television and other activities. Developmental psychology, 35(4), 912–925. https://doi.org/10.1037/0012–1649.35.4.912Google Scholar
  26. Jacobsen, W. C., & Forste, R. (2011). The wired generation: Academic and social outcomes of electronic media use among university students. Cyberpsychology. Behavior and Social Networking, 14(5), 275–280. https://doi.org/10.1089/cyber.2010.0135CrossRefGoogle Scholar
  27. Jadin, T., Richter, C., & Zöserl, E. (2008). Formelle und informelle Lernsituationen aus Sicht. In S. Zauchner (Eds.), Medien in der Wissenschaft: Vol. 48. Offener Bildungsraum Hochschule: Freiheiten und Notwendigkeiten ; [13. Europäische Jahrestagung der Gesellschaft für Medien in der Wissenschaft (GMW08)]. Münster [u.a.]: Waxmann.Google Scholar
  28. Jensen, A. R. (2002). Psychometrie g: Definition and Substantiation. In R. J. Sternberg & E. Grigorenko (Eds.), The general factor of intelligence: How general is it?. Mahwah, NJ: Erlbaum.Google Scholar
  29. Junco, R. (2013). Comparing actual and self-reported measures of Facebook use. Computers in Human Behavior, 29(3), 626–631. https://doi.org/10.1016/j.chb.2012.11.007CrossRefGoogle Scholar
  30. Kimmerle, J., Moskaliuk, J., Oeberst, A., & Cress, U. (2015). Learning and Collective Knowledge Construction With Social Media: A Process-Oriented Perspective. Educational Psychologist, 50(2), 120–137. https://doi.org/10.1080/00461520.2015.1036273CrossRefGoogle Scholar
  31. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working- memory capacity?!. Intelligence, 14(4), 389–433. https://doi.org/10.1016/S0160–2896(05)80012–1Google Scholar
  32. Le Roux, D. B., & Parry, D. A. (2017). In-lecture media use and academic performance: Does subject area matter?. Computers in Human Behavior, 77, 86–94. https://doi.org/10.1016/j.chb.2017.08.030CrossRefGoogle Scholar
  33. LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 Questions About Interrater Reliability and Interrater Agreement. Organizational Research Methods, 11(4), 815–852. https://doi.org/10.1177/1094428106296642CrossRefGoogle Scholar
  34. Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata (2. ed.). College Station, Tex.: Stata Press Publ.Google Scholar
  35. Marker, C., Gnambs, T., & Appel, M. (2018). Active on Facebook and Failing at School? Meta-Analytic Findings on the Relationship Between Online Social Networking Activities and Academic Achievement. Educational Psychology Review, 30(3), 651–677. https://doi.org/10.1007/s10648–017-9430–6Google Scholar
  36. Maurer, M., Quiring, O., & Schemer, C. (2018). Media Effects on Positive and Negative Learning. In O. Zlatkin-Troitschanskaia, G. Wittum, & A. Dengel (Eds.), Positive Learning in the Age of Information. Wiesbaden: Springer.Google Scholar
  37. Maurer, M., Schemer, C., Zlatkin-Troitschanskaia, O., & Jitomirski, J. (2020). Positive and Negative Media Effects on University Students’ Learning: Preliminary Findings and a Research Program. In O. Zlatkin-Troitschanskaia, (Ed.), Frontiers and Advances in Positive Learning in the Age of InformaTiOn (PLATO). Springer.Google Scholar
  38. Mazman, S. G., & Usluel, Y. K. (2010). Modeling educational usage of Facebook. Computers & Education, 55(2), 444–453. https://doi.org/10.1016/j.compedu.2010.02.008CrossRefGoogle Scholar
  39. Medienpädagogischer Forschungsverbund Südwest (2017). JIM-Studie 2017 – Jugend, Information, (Multi-)Media.: Basisstudie zum Medienumgang 12- bis 19-Jähriger in Deutschland 2017. Retrieved from https://www.mpfs.de/fileadmin/files/Studien/JIM/2017/JIM_2017.pdfGoogle Scholar
  40. Medienpädagogischer Forschungsverbund Südwest (2018). JIM-Studie 2018 – Jugend, Information, Medien: Basisuntersuchung zum Medienumgang 12- bis 19-Jähriger. Retrieved from https://www.mpfs.de/fileadmin/files/Studien/JIM/2018/Studie/JIM_2018_Gesamt.pdfGoogle Scholar
  41. Münchow, H., Richter, T., Mühlen, S. von der, & Schmid, S. (2019). The ability to evaluate arguments in scientific texts: Measurement, cognitive processes, nomological network, and relevance for academic success at the university. The British Journal of Educational Psychology. Advance online publication. https://doi.org/10.1111/bjep.12298CrossRefGoogle Scholar
  42. Naglieri, J. A., & Das, J. P. (2002). Practical Implications of General Intelligence and PASS Cognitive Processes. In R. J. Sternberg & E. Grigorenko (Eds.), The general factor of intelligence: How general is it?. Mahwah, NJ: Erlbaum.Google Scholar
  43. OECD. (2017). Education at a Glance 2017: OECD Indicators. Paris: OECD Publishing.Google Scholar
  44. Oxford English Dictionary. (2019). “post-truth, adj.”: Oxford University Press. Retrieved from https://www.oed.com/view/Entry/58609044?redirectedFrom=post-truth&Google Scholar
  45. Pant, H. A., Zlatkin-Troitschanskaia, O., Schipolowski, S., & Förster, M. (2016). WiWiSET – Validation of an Entrance Examination in the Study Domain of Business and Economics and Universities of Applied Sciences: A National and International Comparative Study of Universities. In H. A. Pant, O. Zlatkin-Troitschanskaia, C. Lautenbach, M. Toepper, & D. Molerov (Eds.), Modeling and Measuring Competencies in Higher Education – Validation and Methodological Innovations (KoKoHs): Overview of the Research Projects (pp. 60–61). Retrieved from https://www.kompetenzen-im-hochschulsektor.de/files/2018/05/KoKoHs_Working_Papers_No.11_Final_04.07.pdfGoogle Scholar
  46. Pasta, D. J. (2009). Learning when to be discrete: Continuous vs. categorical predictors. Proceedings of the Thirty-fourth Annual (No. 248). Washington, DC, USA.Google Scholar
  47. Poulain, T., Peschel, T., Vogel, M., Jurkutat, A., & Kiess, W. (2018). Cross-sectional and longitudinal associations of screen time and physical activity with school performance at different types of secondary school. BMC Public Health, 18(1), 563. https://doi.org/10.1186/s12889–018-5489–3Google Scholar
  48. Preacher, K. J. (2014). Extreme Groups Designs. In R. L. Cautin (Eds.), The encyclopedia of clinical psychology (Vol. 40, pp. 1–4). Chichester: Wiley. https://doi.org/10.1002/9781118625392.wbecp190Google Scholar
  49. Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme groups approach: A critical reexamination and new recommendations. Psychological Methods, 10(2), 178–192. https://doi.org/10.1037/1082–989X.10.2.178Google Scholar
  50. Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92. https://doi.org/10.1016/j.intell.2006.05.004CrossRefGoogle Scholar
  51. Rössler, P. (2011). Skalenhandbuch Kommunikationswissenschaft ( 1. A ufl.). W iesbaden: VS Verlag für Sozialwissenschaften/Springer Fachmedien Wiesbaden GmbH Wiesbaden. Retrieved from http://dx.doi.org/10.1007/978–3-531–94179-0 https://doi.org/10.1007/978–3-531–94179-0Google Scholar
  52. Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118–137. https://doi.org/10.1016/j.intell.2015.09.002CrossRefGoogle Scholar
  53. Saini, C., & Abraham, J. (2019). Modeling educational usage of social media in pre-service teacher education. Journal of Computing in Higher Education, 31(1), 21–55. https://doi.org/10.1007/s12528–018-9190–4Google Scholar
  54. Schipolowski, S., Wilhelm, O., & Schroeders, U. (2020). Berliner Test zur Erfassung fluider und kristalliner Intelligenz für die 11. und 12. Jahrgangsstufe (BEFKI 11–12+). Göttingen: Hogrefe.Google Scholar
  55. Schulmeister, R. (2010). Students, Internet, eLearning and Web 2.0. In M. Ebner & M. Schiefner (Eds.), Looking Toward the Future of Technology-Enhanced Education (pp. 317–347). IGI Global.Google Scholar
  56. Schweizer, K., & Koch, W. (2002). A revision of Cattell’s Investment Theory. Learning and Individual Differences, 13(1), 57–82. https://doi.org/10.1016/S1041–6080(02)00062–6Google Scholar
  57. Sendurur, P., Sendurur, E., & Yilmaz, R. (2015). Examination of the social network sites usage patterns of pre-service teachers. Computers in Human Behavior, 51, 188–194. https://doi.org/10.1016/j.chb.2015.04.052CrossRefGoogle Scholar
  58. Steiner, O. (2013). Pflegen medienkompetente Eltern eine gute Medienerziehung? Ergebnisse einer Repräsentativbefragung von Eltern 10- bis 17-jähriger Kinder. Diskurs Kindheits- und Jugendforschung/Discourse. (8), 471–484.Google Scholar
  59. Te Nijenhuis, J., van Vianen, A. E.M., & van der Flier, H. (2007). Score gains on g-loaded tests: No g. Intelligence, 35(3), 283–300. https://doi.org/10.1016/j.intell.2006.07.006CrossRefGoogle Scholar
  60. Trebbe, J. (2009). Ethnische Minderheiten, Massenmedien und Integration: Eine Untersuchung zu massenmedialer Repräsentation und Medienwirkungen. Zugl.: Berlin, Freie Univ., Habilitationsschrift, 2008. Wiesbaden: VS Verlag für Sozialwissenschaften/GWV Fachverlage GmbH Wiesbaden. https://doi.org/10.1007/978–3-531–91696-5Google Scholar
  61. Tsfati, Y., & Ariely, G. (2014). Individual and Contextual Correlates of Trust in Media Across 44 Countries. Communication Research, 41(6), 760–782. https://doi.org/10.1177/0093650213485972CrossRefGoogle Scholar
  62. Tsfati, Y., & Cappella, J. N. (2003). Do People Watch what they Do Not Trust? Communication Research, 30(5), 504–529. https://doi.org/10.1177/0093650203253371CrossRefGoogle Scholar
  63. Walsh, J. L., Fielder, R. L., Carey, K. B., & Carey, M. P. (2013). Female College Students’ Media Use and Academic Outcomes: Results from a Longitudinal Cohort Study. Emerging Adulthood (Print), 1(3), 219–232. https://doi.org/10.1177/2167696813479780CrossRefGoogle Scholar
  64. Wineburg, S., Breakstone, J., McGrew, S., & Ortega, T. (2018). Why Google Can’t Save Us: The Challenges of our Post-Gutenberg Moment. In O. Zlatkin-Troitschanskaia, G. Wittum, & A. Dengel (Eds.), Positive Learning in the Age of Information (pp. 221–228). Wiesbaden: Springer.Google Scholar
  65. You, K. H., Lee, S. A., Lee, J. K., & Kang, H. (2013). Why read online news? The structural relationships among motivations, behaviors, and consumption in South Korea. Information, Communication & Society, 16(10), 1574–1595. https://doi.org/10.1080/1369118X.2012.724435CrossRefGoogle Scholar
  66. Zawacki-Richter, O. (2015). Zur Mediennutzung im Studium – unter besonderer Berücksichtigung heterogener Studierender. Zeitschrift für Erziehungswissenschaft, 18(3), 527–549. https://doi.org/10.1007/s11618–015-0618–6Google Scholar
  67. Zlatkin-Troitschanskaia, O., Brückner, S., Molerov, D., & Bisang, W. (2020). Frontiers and Advances in Positive Learning in the Age of InformaTiOn (PLATO). Wiesbaden: Springer.Google Scholar
  68. Zlatkin-Troitschanskaia, O., Jitomirski, J., Happ, R., Molerov, D., Schlax, J., Kühling-Thees, C., Brückner, S. (2019b). Validating a Test for Measuring Knowledge and Understanding of Economics Among University Students. Zeitschrift für Pädagogische Psychologie.Google Scholar
  69. Zlatkin-Troitschanskaia, O., Shavelson, R. J., Schmidt, S., & Beck, K. (2019c). On the complementarity of holistic and analytic approaches to performance assessment scoring. The British Journal of Educational Psychology. Advance online publication. https://doi.org/10.1111/bjep.12286Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • J. Jitomirski
    • 1
    Email author
  • Olga Zlatkin-Troitschanskaia
    • 2
  • S. Schipolowski
    • 1
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Johannes Gutenberg University MainzMainzGermany

Personalised recommendations