Advertisement

Methodisches Vorgehen

  • Wolf-Dieter HiemeyerEmail author
  • Dominik Stumpp
Chapter
Part of the FOM-Edition book series (FOMEDITION)

Zusammenfassung

Das fünfte Kapitel beschreibt das methodische Vorgehen zur Prüfung der Hypothesen mithilfe der Strukturgleichungsmodellierung sowie der Messung der Güte der Zusammenarbeit von Marketing und Vertrieb mittels deskriptiver Statistik. Zunächst wird die Entwicklung des Diagnosetools, des sogenannten Integrationsmodells, aufgezeigt, um die Ausprägung der Zusammenarbeit von Marketing und Vertrieb einerseits messen und anderseits visualisieren zu können. Das Integrationsmodell ist eine Portfolio-Darstellung mit fünf Ausprägungsstufen und acht Erfolgsfaktoren. Der zweite Teil des Kapitels befasst sich mit der Beschreibung des Untersuchungsdesigns sowie der Durchführung der Forschungsstudie. In diesem Kontext erfolgt auch die Operationalisierung der Konstrukte, das heißt der Herleitung der Items aus der wissenschaftlichen Literatur. Den Abschluss des fünften Kapitels stellt die Datenanalyse dar. Dabei wird zunächst die Methode der Strukturgleichungsmodellierung vorgestellt, um die kausalen Wirkungszusammenhänge bzw. Hypothesen testen und das Integrationsmodell validieren zu können. Die Messung der Zusammenarbeit von Marketing und Vertrieb erfolgt schließlich im Integrationsmodell durch die Methode der deskriptiven Statistik.

Literatur

  1. Anderson, E., & Gerbig, D. (1988). Structural equation modeling in practice: A review and recommended two-step-approach. Psychological Bulletin, 103, 411–423.CrossRefGoogle Scholar
  2. Arnett, D., & Wittmann, M. (2014). Improving marketing success: The role of tacit knowledge exchange between sales and marketing. Journal of Business Research, 67, 324–331.Google Scholar
  3. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2006). Multivariate analysemethoden (11. Aufl.). Berlin: Springer.Google Scholar
  4. Bacon, L. (1999). Using LISREL and PLS to measure customer satisfaction. https://www.researchgate.net/publication/228523217_Using_LISREL_and_PLS_to_measure_customer_satisfaction. Zugegriffen: 21. Mai 2019.
  5. Bagozzi, R., & Baumgartner, H. (1994). The evaluation of structural equation models and hypotheses testing. In R. Bagozzi (Hrsg.), Principles of marketing research (S. 386–422). Cambridge: Blackwell Business.Google Scholar
  6. Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16, 375–388.CrossRefGoogle Scholar
  7. Bass, B., Avolio, B., Jung, D., & Berson, Y. (2003). Predicting unit performance by assessing transformational and transactional leadership. Journal of Applied Psychology, 88(2), 207–218.CrossRefGoogle Scholar
  8. Behrman, N., & Perreault, D. (1982). Measuring the performance of industrial salespersons. Journal of Business Research, 10(3), 335–370.CrossRefGoogle Scholar
  9. Beverland, M., Steel, M., & Dapiran, P. (2006). Cultural frames that drive sales and marketing apart: An exploratory study. Journal of Business & Industrial Marketing, 21(6), 386–394.CrossRefGoogle Scholar
  10. Biemans, W., & Brencic, M. (2007). Designing the marketing-sales interface in B2B firms. European Journal of Marketing, 41(3/4), 257–273.CrossRefGoogle Scholar
  11. Biemans, W., Brencic, M., & Malshe, A. (2010). Marketing-sales interface configurations in B2B firms. Industrial Marketing Management, 39, 183–194.CrossRefGoogle Scholar
  12. Chin, W. (1998). The partial least squares approach for structural equation modeling. In G. Marcoulides (Hrsg.), Modern methods for business research (S. 295–336). London: Erlbaum.Google Scholar
  13. Chin, W., Marcolin, B., & Newsted, P. (1996). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and voice mail emotion/adaption study. Paper presented at the 17th international conference on information systems, Cleveland, OH.Google Scholar
  14. Chin, W., Marcolin, B., & Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Result from a Monte Carlo simulation study and electronic mail emotion/adoption study. Information Systems Research, 14(2), 189–217.CrossRefGoogle Scholar
  15. Churchill, G. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16, 64–73.CrossRefGoogle Scholar
  16. Churchill, G., & Iacobucci, D. (2002). Market research methodological foundation (8. Aufl.). Mason: South-Western.Google Scholar
  17. Creswell, J. (2009). Research design. Qualitative, quantitative, and mixed methods approaches (3. Aufl.). Thousand Oaks: Sage.Google Scholar
  18. Curtis, R., & Jackson, E. (1962). Multiple indicators in survey research. American Journal of Sociology, 68(2), 195–204.CrossRefGoogle Scholar
  19. Dewsnap, B., & Jobber, D. (2009). An exploratory study of sales-marketing integrative devices. European Journal of Marketing, 43(7/8), 985–1007.CrossRefGoogle Scholar
  20. Eckstein, P. (2013). Angewandte Statistik mit SPSS: Praktische Einführung für Wirtschaftswissenschaftler. Wiesbaden: Springer.Google Scholar
  21. Evans, K., & Schlachter, J. (1985). The role of sales managers and salespeople in a marketing information systems. Journal of Personal Selling & Sales Management, 5, 49–55.Google Scholar
  22. Fornell, C., & Brookstein, F. (1982). Two structural equation models. LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.CrossRefGoogle Scholar
  23. Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.CrossRefGoogle Scholar
  24. Gansser, O., & Krol, B. (2017). Moderne Methoden der Marktforschung – Kunden besser verstehen. Wiesbaden: Springer Gabler.CrossRefGoogle Scholar
  25. Guenzi, P., & Troilo, G. (2006). Developing marketing capabilities for customer value creation through marketing-sales integration. Industrial Marketing Management, 35(11), 974–988.CrossRefGoogle Scholar
  26. Haase, K. (2006). Koordination von Marketing und Vertrieb. Determinanten, Gestaltungsdimensionen und Erfolgsauswirkungen. Wiesbaden: Deutscher Universitäts-Verlag.Google Scholar
  27. Häder, M. (2015). Empirische Sozialforschung. Eine Einführung (3. Aufl.). Wiesbaden: Springer.Google Scholar
  28. Haenlein, M., & Kaplan, A. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297.CrossRefGoogle Scholar
  29. Hair, J., Anderson, R., Tatham, R., & Black, W. (1998). Multivariate data analysis (5. Aufl.). Upper Saddle River: Prentice Hall.Google Scholar
  30. Hair, J., Anderson, R., Tatham, R., & Black, W. (2010). Multivariate data analysis (7. Aufl.). Upper Saddle River: Prentice Hall.Google Scholar
  31. Hair, J., Sarstedt, M., Peiper, T., & Ringle, C. (2012). Application of partial least squares path modeling in management journals: A review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340.CrossRefGoogle Scholar
  32. Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage.Google Scholar
  33. Helfferich, C. (2014). Leitfaden- und Experteninterviews. In N. Baur & J. Blasius (Hrsg.), Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer Fachmedien.Google Scholar
  34. Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–320.CrossRefGoogle Scholar
  35. Hiemeyer, W. (2016). Design of an integrated marketing and sales approach for the B2B industryusing an integration model. Aachen: Shaker Verlag.Google Scholar
  36. Homburg, C., Jensen, O., & Krohmer, H. (2008). Configurations of marketing and sales: A taxonomy. Journal of Marketing Management, 72(2), 133–154.CrossRefGoogle Scholar
  37. Huber, F., Herrmann, A., Meyer, F., Vogel, J., & Vollhardt, K. (2007). Kausalmodellierung mit Partial Least Squares. Wiesbaden: Springer Fachmedien.Google Scholar
  38. Hughes, D., Le Bon, J., & Malshe, A. (2012). The marketing-sales interface at the interface: Creating market-based capabilities through organizational synergy. Journal of Personal Selling and Sales Management, 32(1), 57–72.CrossRefGoogle Scholar
  39. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204.CrossRefGoogle Scholar
  40. Hulland, J., Nenkov, G., & Barclay, D. (2012). Perceived marketing–sales relationship effectiveness: A matter of justice. Journal of the Academy of Marketing Science, 40(3), 450–467.CrossRefGoogle Scholar
  41. Hult, G., Thomas, M., Ketchen, D., & Slater, S. (2002). A longitudinal study of the learning climate and cycle time in supply chains. Journal of Business & Industrial Marketing, 17(4), 302–323.CrossRefGoogle Scholar
  42. Hwang, H., Malhotra, K., Tomiuk, M., & Hong, S. (2010). A comparative study on parameter recovery of three approaches to structural equation modeling. Journal of Marketing Research, 47, 699–712.CrossRefGoogle Scholar
  43. Jacob, R., Heinz, A., & Décieux, J. (2013). Umfrage. Einführung in die Methoden der Umfrageforschung (3. Aufl.). München: Oldenburg Wissenschaftsverlag.CrossRefGoogle Scholar
  44. Kotler, P., Rackham, N., & Krishnaswamy, S. (2006). Ending the war between sales & marketing. Harvard Business Review, 84(7/8), 68–78.Google Scholar
  45. Krohmer, H., Homburg, C., & Workman, J. (2002). Should marketing be cross-functional? Conceptual development and interactional empirical evidence. Journal of Business Research, 55(6), 451–465.CrossRefGoogle Scholar
  46. Kromrey, H. (2009). Empirische Sozialforschung. Modelle und Methoden der standardisierten Datenerhebung und Auswertung (12. Aufl.). Stuttgart: Lucius & Lucius Verlag.Google Scholar
  47. Kuß, A., Wildner, R., & Kreis, H. (2014). Marktforschung. Grundlagen der Datenerhebung und Datenanalyse (5. Aufl.). Wiesbaden: Springer Gabler.Google Scholar
  48. Lawrence, P., & Lorsch, J. (1967). Differentiation and integration in complex organizations. Administrative Science Quarterly, 12, 1–47.CrossRefGoogle Scholar
  49. Le Meunier-FitzHugh, K., & Lane, N. (2009). Collaboration between sales and marketing, market orientation and business performance in business-to-business organisations. Journal of Strategic Marketing, 17(3–4), 291–306.CrossRefGoogle Scholar
  50. Le Meunier-FitzHugh, K., & Piercy, N. (2007a). Exploring collaboration between sales and marketing. European Journal of Marketing, 41(7/8), 939–955.CrossRefGoogle Scholar
  51. Le Meunier-FitzHugh, K., & Piercy, N. (2007b). Does collaboration between sales and marketing affect business performance? Journal of Personal Selling and Sales Management, 27(3), 207–220.CrossRefGoogle Scholar
  52. Le Meunier-FitzHugh, K., & Piercy, N. (2009). Drivers of sales and marketing collaboration in business-to-business selling organisations. Journal of Marketing Management, 25(5–6), 611–633.CrossRefGoogle Scholar
  53. Le Meunier-FitzHugh, K., & Piercy, N. (2010). Improving the relationship between sales and marketing. European Business Review, 22(3), 287–305.CrossRefGoogle Scholar
  54. Le Meunier-FitzHugh, K., & Piercy, N. (2011). Exploring the relationship between market orientation and sales and marketing collaboration. Journal of Personal Selling and Sales Management, 31(3), 287–296.CrossRefGoogle Scholar
  55. Le Meunier-FitzHugh, K., Massey, G., & Piercy, N. (2011). The impact of aligned rewards and senior manager attitudes on conflict and collaboration between sales and marketing. Industrial Marketing Management, 40, 1161–1171.Google Scholar
  56. Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 5–55.Google Scholar
  57. Lohmüller, J. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica.CrossRefGoogle Scholar
  58. Malshe, A. (2011). An exploration of key connections within sales-marketing interface. Journal of Business & Industrial Marketing, 26(1), 45–57.CrossRefGoogle Scholar
  59. Marcoulides, G., & Saunders, C. (2006). Editor’s comments – PLS: A silver bullet? MIS Quarterly, 30, 3–9.CrossRefGoogle Scholar
  60. Matthyssens, P., & Johnston, W. (2006). Marketing and sales: Optimization of a neglected relationship. Journal of Business & Industrial Marketing, 21(6), 338–345.CrossRefGoogle Scholar
  61. Nunnally, J., & Bernstein, J. (1994). Psychometric theory (3. Aufl.). New York: McGraw-Hill.Google Scholar
  62. Ohlwein, M. (1999). Märkte für gebrauchte Güter. Wiesbaden: Springer Gabler.CrossRefGoogle Scholar
  63. Oliva, R. (2006). The three key linkages: Improving the connections between marketing and sales. Journal of Business & Industrial Marketing, 21(6), 395–398.CrossRefGoogle Scholar
  64. Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information system research. MIS Quarterly, 31(4), 623–656.CrossRefGoogle Scholar
  65. Ringle, C., Wende, S., & Will, A. (2005). SmartPls 2.0 (beta). Hamburg: Smartpls.Google Scholar
  66. Rouziès, D., & Hulland, J. (2014). Does marketing and sales integration always pay off? Evidence from a social capital perspective. Journal of the Academy of Marketing Science, 42, 511–527.CrossRefGoogle Scholar
  67. Rouziès, D., Anderson, E., Kohli, A., Michaels, R., Weitz, B., & Zoltners, A. (2005). Sales and marketing integration: A proposed framework. Journal of Personal Selling and Sales Management, 15(2), 113–122.Google Scholar
  68. Schnell, R., Hill, P., & Esser, E. (2011). Methoden der empirischen Sozialforschung (9. Aufl.). München: Oldenburg Wissenschaftsverlag GmbH.Google Scholar
  69. Sosik, J., Kahai, S., & Piovoso, M. (2009). Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Emerald Management Reviews: Group and Organization Management, 34(1), 5–36.Google Scholar
  70. Statsoft (2013). Structural equation modeling (Statsoft Electronic Statistic Textbook). https://www.statsoft.com/textbook/structural-equation-modeling. (Zugegriffen: 21. Mai. 2019).
  71. Troilo, G., Luca, Luigi M., & Guenzi, P. (2009). Dispersion of influence between marketing and sales: Its effects on superior customer value and market performance. Industrial Marketing Management, 38(8), 872–882.CrossRefGoogle Scholar
  72. Weiber, R., & Mühlhaus, D. (2014). Strukturgleichungsmodellierung. Eine anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS (2. Aufl.). Wiesbaden: Springer Gabler Verlag.Google Scholar
  73. Wold, H. (1966). Nonlinear estimation by partial least squares procedures. In F. David (Hrsg.), Research papers in statistic (S. 411–444). Hoboken: Wiley.Google Scholar
  74. Wold, H. (1973). Nonlinear iterative partial least squares (NIPALS). In P. Krishnaiah (Hrsg.), Multivariate analysis (S. 383–407). Hoboken: Wiley.Google Scholar
  75. Wold, H. (1975). Path models with latent variables. In H. Blalock (Hrsg.), Quantitative sociology: International perspectives on mathematical and statistical model building (S. 307–357). New York: Academic.CrossRefGoogle Scholar
  76. Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. Jöreskog & H. Wold (Hrsg.), Systems under indirect oberservation, part II (S. 1–54). Amsterdam: North-Holland.Google Scholar
  77. Wong, K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1–31.Google Scholar
  78. Zoltners, A. (2004). Sales and marketing interface. Sales force summit. Houston: University of Houston.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.FOM Hochschule für Oekonomie & ManagementMünchenDeutschland
  2. 2.MSI Partner ConsultingMünchenDeutschland

Personalised recommendations