Advertisement

Die Risikowahrnehmung von Überschwemmungen durch Betroffene in Babessi, Kamerun

  • Gertrud Rosa BuchenriederEmail author
  • Julian Sebastian Brandl
  • Azibo Roland Balgah
Chapter

Zusammenfassung

In den letzten Jahrzehnten ist die Zahl der extremen Naturereignisse und auch ihre Volatilität gestiegen. Im Zeitraum von 1980 bis 2012 beobachtete die Emergency Database (EM-DAT) am Center for Research on the Epidemiology of Disasters (CRED) eine rapide Zunahme solcher Vorfälle. Die Zahl blieb auch in den 2010er Jahren auf einem erhöhten Niveau. Allein die hydrometeorologischen Naturereignisse machten 87 % aller Katastrophen aus (Weltbank 2014: Online-Ressource), wobei Überschwemmungen für etwa 50 % der Ereignisse stehen (1995-2014). Überschwemmungen sind somit die am häufigsten auftretende Klasse von Naturkatastrophen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexander, D.E. (2000. Confronting catastrophe. New York, NY, USA: Oxford University Press.Google Scholar
  2. Alexander, D.E. (2009): Natural hazards. In Geography - Encyclopedia of Life Support Systems (EOLLS), vol. 1, Sala, M. (ed.): 364-387. Paris, F: Eolss Publishers.Google Scholar
  3. Armas, J. (2006): Earthquake risk perception in Bucharest, Romania. Risk Analysis 26 (5): 1223-1234.CrossRefGoogle Scholar
  4. Backhaus, K., Erichson, B., Weiber, R., and W. Plinke (2016): Multivariate Analysemethoden. Berlin, D: Springer.CrossRefGoogle Scholar
  5. Balgah, R.A., Buchenrieder, G.R., and I.N. Mbue (2015): When nature frowns: A comprehensive impact assessment of the 2012 Babessi floods on people’s livelihoods in rural Cameroon. Journal of Disaster Risk Studies 7 (1): 1-8.Google Scholar
  6. Bang, H.N. (2008): Social vulnerability and risk perception to natural hazards in Cameroon two decades after the Lake Nyos gas disaster: What future prospect for the displaced disaster victims? Presentation during the 2008 Summer Academy for Social Vulnerability. Bonn, D: United Nations University, Institute for Environment and Human Security (UNU-EHS).Google Scholar
  7. Barke, R.P., Jenkins-Smith, H., and P. Slovic (1997): Risk perceptions of men and women scientists. Social Science Quarterly 78 (1): 167-176.Google Scholar
  8. Bechmann, G. von (1993): Einleitung: Risiko - ein neues Forschungsfeld? In Risiko und Gesellschaft: Grundlagen und Ergebnisse interdisziplinärer Risikoforschung, Bechmann, G. von (Hrg.): VII-XXIX. Opladen, D: Westdeutscher Verlag.Google Scholar
  9. Below, R., Wirtz, A., and D. Guha-Sapir (2009): Disaster category classification and peril terminology for operational purposes. Working Paper. Louvain, BE: University Catholique de Louvain, Centre for Research on the Epidemiology of Disasters (CRED), available at: https://www.cred.be/node/564 (last visited: 21.02.2019).
  10. Benson, C., and E.J. Clay (2004): Understanding the economic and financial impacts of natural disasters. Disaster Risk Management Series No. 4. Washington, DC, USA: World Bank Publications.Google Scholar
  11. Best, H., and C. Wolf (2010): Logistische Regression. In Wolf, C., and H. Best (eds.): Handbuch der sozialwissenschaftlichen Datenanalyse. Wiesbaden, D: Springer, 827-854.CrossRefGoogle Scholar
  12. Birkmann, J. (2013): Risk. In Encyclopedia of natural hazards, Bobrowsky, P.T. (ed.): 856-862. Berlin, D: Springer.CrossRefGoogle Scholar
  13. Bokwa, A. (2013): Natural hazard. In Bobrowsky, P.T. (ed.): Encyclopedia of natural hazards. Dordrecht, NL: Springer, 711-718.CrossRefGoogle Scholar
  14. Bonß, W. (1996): Die Rückkehr der Unsicherheit: Zur gesellschaftstheoretischen Bedeutung des Risikobegriffs. In Banse, G. (Hrsg.): Risikoforschung zwischen Disziplinarität und Interdisziplinarität. Von der Illusion der Sicherheit zum Umgang mit Unsicherheit. Berlin, D: edition sigma, 165-184.Google Scholar
  15. Bonß, W. (1997): Die gesellschaftliche Konstruktion von Sicherheit. In Lippert, E., Prüfert, A., und G. Wachtler (Hrsg.): Sicherheit in der unsicheren Gesellschaft. Opladen, D: Westdeutscher Verlag, 21-41.CrossRefGoogle Scholar
  16. Bonß, W. (1998): Berechenbarkeit und Vertrauen. Zur Herstellung von Sicherheit in der Risikogesellschaft. In Koch, H. und A. Willingmann (Hrsg.): Großschäden – Complex Damages. Rechtliche und alternative Regulierungsstrategien im In- und Ausland. Baden-Baden, D: Nomos, 47-67.Google Scholar
  17. Botzen, W.J.W., Aerts, J.C.J.H., and J.C.J.M. van den Bergh (2009): Dependence of flood risk perceptions on socioeconomic and objective risk factors. Water Resources Research 45 (10): 1-15.Google Scholar
  18. Brandl, J.S. (2017): The perception of environmental risks when natural hazards hit: A theory based empirical analysis of smallholder farmers in Cameroon. Weihenstephan, D: Technical University Munich (TUM), TUM School of Life Sciences.Google Scholar
  19. Bronfman, N.C., Cisternas, P.C., López-Vázquez, E., and L.A. Cifuentes (2016): Trust and risk perception of natural hazards: Implications for risk preparedness in Chile. Natural Hazards 81 (1): 307-327.CrossRefGoogle Scholar
  20. Burningham, K., Fielding, J., and D. Thrush (2008): ‘It’ll never happen to me’: Understanding public awareness of local flood risk. Disasters 32 (2): 216-238.CrossRefGoogle Scholar
  21. Bustillos Ardaya, A., Evers, M., and L. Ribbe (2007): What influences disaster risk perception? Intervention measures, flood and landslide risk perception of the population living in flood risk areas in Rio de Janeiro state, Brazil. International Journal of Disaster Risk Reduction 25: 227-237.CrossRefGoogle Scholar
  22. Chambers, R. (1989): Vulnerability, coping and policy. IDS Bulletin Transforming Development Knowledge 20 (2): 1-7, available at: http://bulletin.ids.ac.uk/idsbo/issue/view/138 (last visited: 07.03.2019).CrossRefGoogle Scholar
  23. Dake, K. (1991): Orienting dispositions in the perception of risk. An analysis of contemporary worldviews and cultural biases. Journal of Cross-Cultural Psychology 22 (1): 61-82.CrossRefGoogle Scholar
  24. Dake, K. (1992): Myths of nature: Culture and the social construction of risk. Journal of Social Issues 48 (4): 21-37.CrossRefGoogle Scholar
  25. Douglas, M. (1978): Cultural bias. Occasional Paper no. 35. London, UK: Royal Anthropological Institute of Great Britain and Ireland.Google Scholar
  26. Douglas, M. (1982): Essays in the sociology of perception. London, UK: Routledge & Kegan Paul.Google Scholar
  27. Douglas, M., and A. Wildavsky (1982): Risk and culture: An essay on the selection of technical and environmental dangers. Berkeley, CA, USA: Berkeley: University of California Press.Google Scholar
  28. Emergency Database (EM-DAT) (2019): Disaster criteria. Brussels, BE: Centre for Research on the Epidemiology of Disasters (CRED), Université Catholique de Louvain, available at: https://www.emdat.be/explanatory-notes & https://emdat.be/glossary(last visited: 05.02.2019).
  29. Eriksen, S.H., Brown, K., and P.M. Kelly (2005): The dynamics of vulnerability: Locating coping strategies in Kenya and Tanzania. Geographical Journal 171 (4): 287-305.CrossRefGoogle Scholar
  30. Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., and B. Combs (1978): How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Science 9 (2): 127-152.CrossRefGoogle Scholar
  31. Fondo, S., Balgah, A.R., and T.M Nij (2018): Making decisions after floods: a consistency check of drivers across multiple flood types. MOJ Ecology & Environmental Sciences 3 (6): 393-401.Google Scholar
  32. Fothergill, A. (1996): Gender, risk, and disaster. International Journal of Mass Emergencies and Disasters 14 (1): 33-56.Google Scholar
  33. Fullerton, A.S. (2009): A conceptual framework for ordered logistic regression models. Sociological Methods & Research 38 (2): 306-347.Google Scholar
  34. Gautschi, T. (2010): Maximum-Likelihood Schätztheorie. In Wolf, C., and H. Best (Hrsg.): Handbuch der sozialwissenschaftlichen Datenanalyse. Wiesbaden, D: Springer, 205-235.CrossRefGoogle Scholar
  35. Greenberg, M.R., and D.F. Schneider (1995): Gender differences in risk perception: Effects differ in stressed vs. non-stressed environments. Risk Analysis 15 (4): 503-511.CrossRefGoogle Scholar
  36. Gustafsod, P.E. (1998): Gender differences in risk perception: Theoretical and methodological perspectives. Risk Analysis 18 (6): 805-811.CrossRefGoogle Scholar
  37. Halpern-Felsher, B.L., Millstein, S.G., Ellen, J.M., Adler, N.E., Tschann, J.M., and M. Biehl (2001): The role of behavioral experience in judging risks. Health Psychology 20 (2): 120-126.CrossRefGoogle Scholar
  38. Hewitt, K. (1997): Regions of risk: A geographical introduction to disasters. Harlow, Essex, UK: Longman Limited.Google Scholar
  39. Hisali, E., Birungi, P., and F. Buyinza (2011): Adaptation to climate change in Uganda: Evidence from micro level data. Global Environmental Change 21 (4): 1245-1261.CrossRefGoogle Scholar
  40. Ho, M.-C., Shaw, D., Lin, S., and Y.-C. Chiu (2008): How do disaster characteristics influence risk perception? Risk Analysis 28 (3): 635-643.CrossRefGoogle Scholar
  41. Hug, T., und G. Poscheschnik (2010): Empirisch forschen. Die Planung und Umsetzung von Projekten im Studium. Konstanz, D: utb Verlag.Google Scholar
  42. Kates, R.W., and J.X. Kasperson (1983): Comparative risk analysis of technological hazards: A review. Proceedings of the National Academy of Sciences 80 (22): 7027-7038.CrossRefGoogle Scholar
  43. Kellens, W., Zaalberg, R., Neutens, T., Vanneuville, W., and P. De Maeyer (2011): An analysis of the public perception of flood risk on the Belgian coast. Risk Analysis 31 (7): 1055-1068.CrossRefGoogle Scholar
  44. Kierkegaard, S. (1991): Der Begriff Angst (Originaltitel aus dem Jahr 1844: Begrebet Angst). Hamburg, D: Europäische Verlagsanstalt.Google Scholar
  45. Lave, T.R., and L.B. Lave (1991): Public perception of the risks of floods: Implications for communication. Risk Analysis 11 (2): 255-267.CrossRefGoogle Scholar
  46. Lechowska, E. (2018): What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Natural Hazards 94: 1341-1366.CrossRefGoogle Scholar
  47. Messner, F., and V. Meyer (2005): Flood damage, vulnerability and risk perception - challenges for flood damage research. UFZ-Discussion Paper 13/2005. Leipzig, D: Helmholtz Center for Environmental Research (UFZ), available at: http://hdl.handle.net/10419/45258 (last visited: 20.12.2016).
  48. Middelmann, M.H. (2007): Natural hazards in Australia. Identifying risk analysis requirements. Sidney, Australia: Australian Government, Bureau of Meteorology.Google Scholar
  49. OECD (2018): DAC list of ODA recipients. Paris, F: OECD, available at: http://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/daclist.htm (last visited: 05.02.2019).
  50. Oltedal, S., Moen, B.-E., Klempe, H., and T. Rundmo (2004): Explaining risk perception: An evaluation of cultural theory. Trondheim, Norway: Rotunde.Google Scholar
  51. Oswald, M.E. (1994): Vertrauen - eine Analyse aus psychologischer Sicht. In Hof, H., Kummer, H. und P. Weingart (Hrsg.): Recht und Verhalten. Baden-Baden, D: Nomos, 111-128.Google Scholar
  52. Paton, D. (2008): Risk communication and natural hazard mitigation: How trust influences its effectiveness. International Journal of Global Environmental Issues 8 (1-2): 2-16.CrossRefGoogle Scholar
  53. Peacock, W.G., Brody, S.D., and W. Highfield (2005): Hurricane risk perceptions among Florida’s single family homeowners. Landscape and Urban Planning 73 (2): 120-135.CrossRefGoogle Scholar
  54. Peters, E., and P. Slovic (1996): The role and affect and worldviews as orienting dispositions in the perception and acceptance of nuclear power. Journal of Applied Social Psychology 26 (16): 1427-1453.CrossRefGoogle Scholar
  55. Plapp, T., and U. Werner (2006): Understanding risk perception from natural hazards: Examples from Germany. In Ammann, W.J., Dannenmann, S., and L. Vulliet (eds.): RISK21 - Coping with risks due to natural hazards in the 21st century. London, UK: Taylor & Francis, 101-108.Google Scholar
  56. Pohlmann, S. (2015): Gender und Vulnerabilität: Eine geschlechtsdifferenzierte Untersuchung im überflutungsgefährdeten Gebiet Babessi in Nordwest Kamerun. Masterarbeit. Neubiberg, D: Universität der Bundeswehr München.Google Scholar
  57. Qasim, S., Khan, A.N., Shrestha, R.P., and M. Qasim (2015): Risk perception of the people in the flood prone Khyber Pukhthunkhwa province of Pakistan. International Journal of Disaster Risk Reduction 14 (4): 373-378.CrossRefGoogle Scholar
  58. Raaijmakers, R., Krywkow, J., and A. Van der Veen (2008): Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation. Natural Hazards 46 (3): 307-322.CrossRefGoogle Scholar
  59. Renn, O. (1992): Concepts of risk: A classification (Chap. 3). In Social theories of risk, (eds.), Krimsky, S., and D. Golding (eds.): 53-79. Westport, Connecticut, USA: Praeger.Google Scholar
  60. Rippl, S. (2002): Cultural theory and risk perception: A proposal for a better measurement. Journal of Risk Research 5 (2): 147-165.CrossRefGoogle Scholar
  61. Rohrmann, B. (1995): Risk perception research: Review and documentation. Programmgruppe Mensch, Umwelt, Technik (MUT). Jülich, D: Forschungszentrums Jülich.Google Scholar
  62. Short, J.F. (1984): The social fabric at risk: Toward the social transformation of risk analysis. American Sociological Review 49 (6): 711-725.CrossRefGoogle Scholar
  63. Savage, I. (1993): Demographic influences on risk perceptions. Risk Analysis 13 (4): 413-420.CrossRefGoogle Scholar
  64. Schendera, C.F.G. (2014): Regressionsanalyse mit SPSS. Vol. 2. Oldenbourg, D: Wissenschaftsverlag.Google Scholar
  65. Schipper, E.L.F. (2010): Religion as an integral part of determining and reducing climate change and disaster risk: An agenda for research. In Voss, M. (Hrsg.): Der Klimawandel – Sozialwissenschaftliche Perspektiven. Wiesbaden, D: VS Verlag für Sozialwissenschaften, 377-393.CrossRefGoogle Scholar
  66. Schrieder, G. (1996): The role of rural finance for food security of the poor in Cameroon. Frankfurt, D: Lang.Google Scholar
  67. Siegrist, M. (2000): The influence of trust and perceptions of risks and benefits on the acceptance of gene technology. Risk Analysis 20 (2): 195-204.CrossRefGoogle Scholar
  68. Siegrist, M., and G. Cvetkovich (2000): Perception of hazards: The role of social trust and knowledge. Risk Analysis 20 (5): 713–720.CrossRefGoogle Scholar
  69. Siegrist, M., and H. Gutscher (2008): Natural hazards and motivation for mitigation behavior: People cannot predict the affect evoked by a severe flood. Risk Analysis 28 (3): 771-778.CrossRefGoogle Scholar
  70. Siegrist, M., Cvetkovich, G., and C. Roth (2000): Salient value similarity, social trust, and risk/benefit perception. Risk Analysis 20 (3): 353-362.CrossRefGoogle Scholar
  71. Sivakumar, M.V.K. (2005): Impacts of natural disasters in agriculture, rangeland and forestry: An overview. In Sivakumar, M.V.K., Motha, R.P., and P. Haripada (eds.): Natural disaster and extreme events in agriculture. Berlin, D: Springer, 1-20.Google Scholar
  72. Sjöberg, L., Moen, B.-E., and T. Rundmo (2004): Explaining risk perception. An evaluation of the psychometric paradigm in risk perception research. Trondheim, Norway: Rotunde.Google Scholar
  73. Slovic, P. (1987): Perception of risk. American Association for the Advancement of Science 236 (4799): 280-285.CrossRefGoogle Scholar
  74. Slovic, P. (1993): Perceived risk, trust, and democracy. Risk Analysis 13 (6): 675-682.CrossRefGoogle Scholar
  75. Slovic, P., Fischhoff, B., and S. Lichtenstein (1982): Why study risk perception? Risk Analysis 2 (2): 83-93.CrossRefGoogle Scholar
  76. Slovic, P., Fischhoff, B., and S. Lichtenstein (1985): Characterizing perceived risk. In Kates, R.W., Hohenemser, C., and J.X. Kasperson (eds.): Perilous progress: Managing the hazards of technology (Westview Special Studies in Science, Technology, and Public). Boulder, Colorado, USA: Westview Press, 91-125.Google Scholar
  77. Smith, K. (2013): Environmental hazards: Assessing risk and reducing disaster. London, UK: Routledge.CrossRefGoogle Scholar
  78. Starr, C. (1969): Social benefit versus technological risk. Science 165 (3899): 1232-1238.CrossRefGoogle Scholar
  79. Stillwell, H.D. (1992): Natural hazards and disasters in Latin America. Natural Hazards 6 (2): 131-159.CrossRefGoogle Scholar
  80. Terpstra, T. (2010): Flood preparedness: Thoughts, feelings and intentions of the Dutch public. PhD Thesis. Enschede, NL: University of Twente.Google Scholar
  81. UN (2017): Population density and urbanization. New York, NY, USA: United Nations, UN Statistics Division, available at: https://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm (last visited: 21.02.2019).
  82. UN DESA (2015): 2014 Revision Report: World urbanization prospects. New York, NY, USA: United Nations, Department of Economics and Social Affairs (UN DESA).Google Scholar
  83. UN DESA (2017): Household size and composition around the world 2017. New York, NY, USA: United Nations, Department of Economics and Social Affairs (UN DESA), available at: http://www.un.org/en/development/desa/population/publications/pdf/ageing/household_size_and_composition_around_the_world_2017_data_booklet.pdf (last visited: 22.02.2019).
  84. UNDP (2004): Reducing disaster risk: A challenge for development. New York, NY, USA: United Nations Development Program (UNDP), Bureau of Crisis Prevention and Recovery, available at: http://www.planat.ch/fileadmin/PLANAT/planat_pdf/alle_2012/2001-2005/Pelling__Maskrey_et_al_2004_-_Reducing_Disaster_Risk.pdf (last visited: 01.03.2019).
  85. UNISDR (2004): Living with Risk - A global review of disaster reduction initiatives. Volume 1. New York, NY, USA: United Nations Office for Disaster Risk Reduction (UNISDER).Google Scholar
  86. UNISDR (2009): International strategy for disaster reduction. UNISDR Terminology on disaster risk reduction. New York, NY, USA: United Nations Office for Disaster Risk Reduction (UNISDER).Google Scholar
  87. Vittinghoff, E., and C. E. McCulloch (2007): Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology 165: 710-718CrossRefGoogle Scholar
  88. Voss, M. (2010): Einleitung: Perspektiven sozialwissenschaftlicher Klimawandelforschung. In Voss, M. (Hrsg.): Der Klimawandel – Sozialwissenschaftliche Perspektiven. Wiesbaden, D: VS Verlag für Sozialwissenschaften, 9-40.CrossRefGoogle Scholar
  89. Wachinger, G., and O. Renn (2010): Risk perception and natural hazards. Risk Perception and Natural Hazards. CapHaz-Net WP3 Report, Stuttgart, D: DIALOGIK Non-Profit Institute for Communication and Cooperative Research, available at: http://caphaznet.org/outcomes-results/CapHaz-Net_WP3_Risk-Perception.pdf (last visited: 21.02.2019).
  90. Wagner, K. (2010): Der Klimawandel als Auslöser eines rapiden Wandels im „Naturgefahrenmanagement“. In Voss, M. (Hrsg.): Der Klimawandel – Sozialwissenschaftliche Perspektiven. Wiesbaden, D: VS Verlag für Sozialwissenschaften, 363-376.CrossRefGoogle Scholar
  91. Wildavsky, W.A., and K. Dake (1990): Theories of risk perception: Who fears what and why? Daedalus 119 (4): 41-60.Google Scholar
  92. Wachinger, G., Renn, O., Begg, C., and C. Kuhlicke (2013): The risk perception paradox – Implications for governance and communication of natural hazards. Risk Analysis 33 (6): 1049-1065.CrossRefGoogle Scholar
  93. Wilhite, D.A. (ed.) (2000): Droughts: A global assessment. Abingdon, UK: Routledge.Google Scholar
  94. World Bank (2014): Managing disaster risk for resilient development. Washington, DC, USA: World Bank, available at: http://www.worldbank.org/en/results/2013/04/12/managing-disaster-risks-resilient-development (last visited: 06.02.2019).
  95. World Bank (2016): World Bank open data. Washington, DC, USA: World Bank, available at http://data.worldbank.org (last visited: 14.10.2017).

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Gertrud Rosa Buchenrieder
    • 1
    Email author
  • Julian Sebastian Brandl
    • 2
  • Azibo Roland Balgah
    • 3
  1. 1.Institut für Soziologie und VolkswirtschaftUniversität der Bundeswehr MünchenNeubibergDeutschland
  2. 2.BaselSchweiz
  3. 3.College of TechnologyThe University of BamendaBamendaKamerun

Personalised recommendations