Introduction: Socio‐Technical Futures Shaping the Present

  • Andreas LöschEmail author
  • Armin Grunwald
  • Martin Meister
  • Ingo Schulz-Schaeffer
Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)


Socio-technical futures like visions or scenarios, that is the more or less systematic imagination of the interplay of future technologies with future society, have played an important role in Science and Technology Studies (STS) und Technology Assessment (TA) for decades. For a long time, the debates on and the analysis of these socio-technical futures have focused on the plausibility and legitimacy of these futures as anticipations, both on the technical and on the societal side. Only recently, the focus has shifted to investigating how socio-technical images of the future influence the present, that is, how they contribute to present processes of policymaking, societal debate and technology development, equally. This volume presents papers that focus on the question how socio-technical images of the future shape present processes of innovation and transformation.


  1. Adam, B., & Groves, C. (2007). Future matters: Action, knowledge, ethics. Leiden: Brill.Google Scholar
  2. Akrich, M. (1992). The de-scription of technical objects. In W. Bijker & J. Law (Eds.), Shaping technology, building society (pp. 205–224). Cambridge: MIT Press.Google Scholar
  3. Anderson, B. (2010). Preemption, precaution, preparedness: Anticipatory action and future geographies. Progress in Human Geography, 34(6), 777–798.CrossRefGoogle Scholar
  4. Barben, D., Fisher, E., Selin, C., & Guston, D. (2008). Anticipatory governance of nanotechnology: Foresight, engagement, and integration. In E. Hachett, O. Amsterdamska, M. Lynch, & J. Wajcman (Eds.), The handbook of science and technology studies (3rd ed., pp. 979–1000). Cambridge: MIT Press.Google Scholar
  5. Bijker, W. E., & Law, J. (Eds.). (1992). Shaping technology/building society. Cambridge: MIT Press.Google Scholar
  6. Bijker, W. E., Hughes, T. P., & Pinch, T. J. (Eds.). (1987). The social construction of technological systems. New directions in the sociology and history of technological systems. Cambridge: MIT Press.Google Scholar
  7. Borup, M., Brown, N., Konrad, K., & van Lente, H. (2006). The sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285–298.CrossRefGoogle Scholar
  8. Brown, N., & Michael, M. (2003). A sociology of expectations: Retrospecting prospects and prospecting retrospects. Technology Analysis & Strategic Management, 15(1), 4–18.CrossRefGoogle Scholar
  9. Brown, N., Rappert, B., & Webster, A. (Eds.). (2000). Contested futures: A sociology of prospective techno-science. Burlington: Ashgate.Google Scholar
  10. Callon, M. (1995). Four models for the dynamics of science. In S. Jasanoff, G. E. Markle, J. C. Petersen, & T. Pinch (Eds.), Handbook of science and technology studies (pp. 29–63). Thousand Oaks: Sage.Google Scholar
  11. Coenen, C. (2010). Deliberating visions: The case of human enhancement in the discourse on nanotechnology and convergence. In M. Kaiser, M. Kurath, S. Maasen, & C. Rehmann-Sutter (Eds.), Governing future technologies. Nanotechnology and the rise of an assessment regime (pp. 73–87). Dordrecht: Springer.Google Scholar
  12. Dierkes, M., Hoffman, U., & Marz, L. (1996). Visions of technology. Social and institutional factors shaping the development of new technologies. Frankfurt a. M.: Campus.Google Scholar
  13. Engels, F., & Münch, A. V. (2015). The micro smart grid as a materialised imaginary within the German energy transition. Energy Research & Social Science, 9, 35–42. Scholar
  14. Fujimura, J. H. (2003). Future imaginaries, genome scientists as sociocultural entrepreneurs’. In A. H. Goodman, D. Heath, & S. M. Lindee (Eds.), Genetic nature/culture (pp. 176–199). Los Angeles: University of California Press.Google Scholar
  15. Geels, F. W. (2005). Technological transitions and system innovations. A co-evolutionary and socio-technical analysis. Cheltenham: Eigar.CrossRefGoogle Scholar
  16. Geels, F. W., & Schot, J. (2010). The dynamics of transitions: A socio-technical perspective. In J. Grin, J. Rotmans, J. Schot, & F. W. Geels (Eds.), Transitions to sustainable development: New directions in the study of long term transformative change (pp. 11–101). New York: Routledge.Google Scholar
  17. Grin, J., & Grunwald, A. (Eds.). (2000). Vision assessment: Shaping technology in 21st century society. Towards a repertoire for technology assessment. Berlin: Springer.Google Scholar
  18. Grunwald, A. (2009). Vision assessment supporting the governance of knowledge-The case of futuristic nanotechnology. In G. Bechmann, V. Gorokhov, & N. Stehr (Eds.), The social integration of science. Institutional and epistemological aspects of the transformation of knowledge in modern society (pp. 147–170). Berlin: Edition Sigma.Google Scholar
  19. Grunwald, A. (2013). Modes of orientation provided by futures studies: Making sense of diversity and divergence. European Journal of Futures Research, 2, 30. Scholar
  20. Grunwald, A. (2014). The hermeneutic side of responsible research and innovation. Journal of Responsible Innovation, 1(3), 274–291.CrossRefGoogle Scholar
  21. Grunwald, A. (2016). The hermeneutic side of responsible research and innovation. London: Wiley.CrossRefGoogle Scholar
  22. Grunwald, A. (2018). Technology assessment. From practice to theory. London: Routledge.CrossRefGoogle Scholar
  23. Guston, D., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24, 93–109.CrossRefGoogle Scholar
  24. Hyysalo, S. (2006). Representations of use and practice-bound imaginaries in automating the safety of the elderly. Social Studies of Science, 36(4), 599–626.CrossRefGoogle Scholar
  25. Jasanoff, S., & Kim, S.-H. (2015). Dreamscapes of modernity. sociotechnical imaginaries and the fabrication of power. Chicago: Chicago University Press.CrossRefGoogle Scholar
  26. Kaiser, M., Kurath, M., Maasen, S., & Rehmann-Sutter, C. (Eds.). (2010). Governing future technologies; Nanotechnology and the rise of an assessment regime. Dordrecht: Springer.Google Scholar
  27. Konrad, K. (2006). The social dynamics of expectations: The interaction of collective and actor-specific expectations on electronic commerce and interactive television. Technology Analysis & Strategic Management, 18(3–4), 429–444.CrossRefGoogle Scholar
  28. Konrad, K., van Lente, H., Groves, C., & Selin, C. (2017). Performing and governing the future in science and technology. In U. Felt, R. Fouché, C. A. Miller, & L. Smith-Doerr (Eds.), The handbook of science and technology studies (4th ed., pp. 465–493). Cambridge: MIT Press.Google Scholar
  29. Lösch, A., Böhle, K., Coenen, C., Dobroc, P., Ferrari, A., Heil, R., Hommrich, D., Sand, M., Schneider, C., Aykut, S., Dickel, S., Fuchs, D., Gransche, B., Grunwald, A., Hausstein, A., Kastenhofer, K., Konrad, K., Nordmann, A., Schaper-Rinkel, P., Scheer, D., Schulz-Schaeffer, I., Torgersen, H., & Wentland, A. (2016). Technikfolgenabschätzung von soziotechnischen Zukünften. Discussionpaper 3, Institute for Technology Futures. Karlsruhe: KIT.
  30. Lösch, A., & Schneider, C. (2016). Transforming power/knowledge apparatuses: The smart grid in the German energy transition. Innovation: The European Journal of Social Science Research, 29(3), 262–284. Scholar
  31. Marcus, G. (Ed.). (1995). Technoscientific imaginaries. Chicago: University of Chicago Press.Google Scholar
  32. Nill, J., & Kemp, R. (2009). Evolutionary approaches for sustainable innovation policies: From niche to paradigm? Research Policy, 38, 668–680.CrossRefGoogle Scholar
  33. NSTC, National Science and Technology Council. (1999). Nanotechnology. Shaping the world atom by atom. Washington, D.C.: NSTC.Google Scholar
  34. Nordmann, A. (2014). Responsible innovation, the art and craft of future anticipation. Journal of Responsible Innovation, 1(1), 87–98.CrossRefGoogle Scholar
  35. Owen, R., Bessant, J., & Heintz, M. (Eds.). (2013). Responsible innovation: Managing the responsible emergence of science and innovation in society. London: Wiley.Google Scholar
  36. Rotmans, J., & Loorbach, D. (2010). Towards a better understanding of transitions and their governance: A systemic and reflexive approach. In J. Grin, J. Rotmans, J. Schot, & F. W. Geels (Eds.), Transitions to sustainable development: New directions in the study of long term transformative change (pp. 105–220). New York: Routledge.Google Scholar
  37. Selin, C. (2007). Expectations and the emergence of nanotechnology. Science, Technology and Human Values, 32(2), 196–220.CrossRefGoogle Scholar
  38. van den Hoven, J., Doorn, N., Swierstra, T., Koops, B.-J., & Romijn, H. (Eds.). (2014). Responsible innovation 1: Innovative solutions for global issues. Dordrecht: Springer.Google Scholar
  39. van Lente, H. (1993). Promising technology. The dynamics of expectations in technological de-velopment. Delft: Eburon.Google Scholar
  40. von Schomberg, R. (2013). A vision of responsible research and innovation. In R. Owen, J. Bessant, & M. Heintz (Eds.), Responsible innovation: Managing the responsible emergence of science and innovation in society (pp. 51–74). London: Wiley.CrossRefGoogle Scholar
  41. Woolgar, S. (1991). Configuring the user: The case of usability trials. In J. Law (Ed.), A sociology of monsters essays on power, technology and domination (pp. 58–99). London: Routledge.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2019

Authors and Affiliations

  • Andreas Lösch
    • 1
    Email author
  • Armin Grunwald
    • 1
  • Martin Meister
    • 2
  • Ingo Schulz-Schaeffer
    • 2
  1. 1.Institute for Technology Assessment and Systems AnalysisKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Department of SociologyTU BerlinBerlinGermany

Personalised recommendations