Advertisement

Voraussetzungen erfolgreichen Problemlösenlernens

  • Ulrike Kipman
Chapter

Zusammenfassung

In Kap. 3 wird der Forschungsstand bei „erfolgreichem Problemlösen“ beleuchtet. Es werden Forschungsergebnisse zum erfolgreichen Problemlösen im Hinblick auf das Problemlöselernen und im Hinblick auf Eigenschaften von erfolgreichen Problemlöser/innen zusammengestellt. Es ergibt sich, dass es – um erfolgreiches Problemlösen zu erlernen – einerseits die Fähigkeit zur Metakognition und die richtigen Heurismen braucht, andererseits einen guten (handlungsorientierten) Unterricht oder ein gutes handlungsorientiertes Training, bei dem die Problemlöser/innen eine aktive Rolle spielen, eigene Erfahrungen machen und Feedback bekommen. Zudem sind Persönlichkeitsfaktoren und Motivation sowie Hintergrundmerkmale nicht unwesentlich im Zusammenhang mit dem erfolgreichen Problemlösen. Alles in allem scheint es sich um eine Wechselwirkung von Person und Situation zu handeln, die den Erfolg oder Misserfolg beim Problemlösen ausmacht.

Literatur

  1. Adrianson, L. (2001). Gender and computer-mediated communication. Group processes in problem solving. Computers in Human Behavior, 17(1), 71–94.CrossRefGoogle Scholar
  2. Alexander, P. A., & Murphy, P. K. (1999). Nurturing the seeds of transfer. A domain-specific perspective. International Journal of Educational Research, 31(7), 561–576.CrossRefGoogle Scholar
  3. Allen, M. J. (2016). Sex differences in spatial problem-solving styles. Perceptual and Motor Skills, 39(2), 843–846.CrossRefGoogle Scholar
  4. Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86(2), 124–140.CrossRefGoogle Scholar
  5. Asendorpf, J. B. (2009). Persönlichkeitspsychologie. Berlin: Springer.Google Scholar
  6. Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change. An empirical exploration. The Quarterly Journal of Economics, 118(4), 1279–1333.CrossRefGoogle Scholar
  7. Bainbridge, L. (2000). Ironies of automation. In J. Rasmussen (Hrsg.), New technology and human error (New technologies and work, S. 271–283). Ann Arbor: UMI Books on Demand.Google Scholar
  8. Bandura, A., Verres, R., & Kober, H. (Hrsg.). (1979). Sozial-kognitive Lerntheorie (Konzepte der Humanwissenschaften, 1. Aufl.). Stuttgart: Klett-Cotta.Google Scholar
  9. Beckmann, J. F. (1994). Lernen und komplexes Problemlösen. Bonn: Holos.Google Scholar
  10. Bethge, H.-J., Carlson, J. S., & Wiedl, K. H. (1982). The effects of dynamic assessment procedures on Raven Matrices performance, visual search behavior, test anxiety and test orientation. Intelligence, 6(1), 89–97.CrossRefGoogle Scholar
  11. Betsch, T., Funke, J., & Plessner, H. (2011). Denken – Urteilen, Entscheiden, Problemlösen. Mit 14 Tabellen (Springer-Lehrbuch Allgemeine Psychologie für Bachelor). Berlin: Springer.CrossRefGoogle Scholar
  12. BIFIE. (2013). Themenheft Mathematik „Problemlösen“ Volksschule Grundstufe I + II. Graz: Leykam.Google Scholar
  13. Bjorklund, D. F., & Rosenblum, K. E. (2001). Children’s use of multiple and variable addition strategies in a game context. Developmental Science, 4(2), 184–194.CrossRefGoogle Scholar
  14. Bos, W., Lankes, E.-M., Prenzel, M., Schwippert, K., Walther, G., & Valtin, R. (2003). Erste Ergebnisse aus IGLU. Schülerleistungen am Ende der vierten Jahrgangsstufe im internationalen Vergleich. Münster: Waxmann.Google Scholar
  15. Bosma, T., & Resing, W. C. M. (2006). Dynamic assessment and a reversal task: A contribution to needs-based assessment. Educational and Child Psychology, 23, 81–98.Google Scholar
  16. Bransford, J. D., & Schwartz, D. L. (1999). Chapter 3. Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, 24(1), 61–100.CrossRefGoogle Scholar
  17. Brown, A. L. (1982). Learning and development: The problems of compatibility, access and induction. Human Development, 25(2), 89–115.CrossRefGoogle Scholar
  18. Brown, A. L., Bransford, J. D., Ferrara, R., & Campione, J. (1983). Learning, remembering and understanding. In J. H. Flavell (Hrsg.), Handbook of child psychology (4. Aufl. Aufl., S. 77–166). New York: Wiley.Google Scholar
  19. Bruch, M. (2015). Lerntheorien im Kontext des Problemlösens. Eine praktische und umfangreiche Studie zu einem schülerorientierten Unterrichtsansatz. Hamburg: Diplomica.Google Scholar
  20. Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht (Scriptor Praxis – Mathematik). Berlin: Cornelsen Scriptor.Google Scholar
  21. Budoff, M. (1987). The validity of learning potential assessment. In C. S. Lidz (Hrsg.), Dynamic assessment: An interactional approach to evaluating learning potential (S. 52–81). New York: Guilford Press.Google Scholar
  22. Butts, D. P., Hoffman, H. M., & Anderson, M. (1993). Is hands-on experience enough? A study of young children’s views of sinking and floating objects. Journal of Elementary Science Education, 5(1), 50–64.CrossRefGoogle Scholar
  23. Carey, G. L. (1958). Sex differences in problem-solving performance as a function of attitude differences. The Journal of Abnormal and Social Psychology, 56(2), 256–260.CrossRefGoogle Scholar
  24. Carey, B. (2014). Neues Lernen. Warum Faulheit und Ablenkung dabei helfen (1. Aufl.). Reinbek bei Hamburg: Rowohlt.Google Scholar
  25. Chase, W. G., & Ericsson, A. (1981). Skilled memory. In J. R. Anderson (Hrsg.), Cognitive skills and their acquisition (S. 141–189). Hillsdale: Erlbaum.Google Scholar
  26. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.CrossRefGoogle Scholar
  27. Chen, Z., & Siegler, R. S. (2000). IX. How changes occur in toddlers’ thinking. Monographs of the Society for Research in Child Development, 65(2), 67–79.CrossRefGoogle Scholar
  28. Chi, M. T. H. (1997). Quantifying qualitative analysis of verbal data. Journal of the Learning Sciences, 6, 271–315.CrossRefGoogle Scholar
  29. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices∗. Cognitive Science, 5(2), 121–152.CrossRefGoogle Scholar
  30. Church, R. B. (1999). Using gesture and speech to capture transitions in learning. Cognitive Development, 14, 313–342.CrossRefGoogle Scholar
  31. Csapó, B. (1997). The development of inductive reasoning: Cross-sectional assessments in an educational context. International Journal of Behavioral Development, 20(4), 609–626.CrossRefGoogle Scholar
  32. Csapó, B., Molnár, G., & Nagy, J. (2014). Computer-based assessment of school readiness and early reasoning. Journal of Educational Psychology, 106(3), 639–650.CrossRefGoogle Scholar
  33. D’Zurilla, T. J., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2011). Predicting social problem solving using personality traits. Personality and Individual Differences, 50(2), 142–147.CrossRefGoogle Scholar
  34. Davis, D. L., Grove, S. J., & Knowles, P. A. (2016). An experimental application of personality type as an analogue for decision-making style. Psychological Reports, 66(1), 167–175.CrossRefGoogle Scholar
  35. Day, S. B., & Gentner, D. (2007). Nonintentional analogical inference in text comprehension. Memory & Cognition, 35(1), 39–49.CrossRefGoogle Scholar
  36. Day, S. B., & Goldstone, R. L. (2012). The import of knowledge export: Connecting findings and theories of transfer of learning. Educational Psychologist, 47(3), 153–176.CrossRefGoogle Scholar
  37. De Corte, E. (2003). Transfer as the productive use of acquired knowledge, skills and motivations. Current Directions in Psychological Science, 12(4), 142–146.CrossRefGoogle Scholar
  38. De Groot, A. D. (1965). Thought and choice in chess. The Hague: Mouton.Google Scholar
  39. Deci, E., & Ryan, R. (1993). Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Zeitschrift für Pädagogik, 39, 223–238.Google Scholar
  40. Detterman, D. K. (1993). Individual differences and cognition: Current topics in human intelligence. Norwood: Ablex.Google Scholar
  41. Dörner, D. (1976). Problemlösen als Informationsverarbeitung (Kohlhammer-Standards Psychologie: Studientext: Teilgebiet: Denkpsychologie, 1. Aufl.). Stuttgart: Kohlhammer.Google Scholar
  42. Dörner, D. (1983). Empirische Psychologie und Alltagsrelevanz. In G. Jüttemann (Hrsg.), Psychologie in der Veränderung (S. 13–29). Weinheim: Beltz.Google Scholar
  43. Dörner, D. (1984). The organisation of action in time. In E. Frehland (Hrsg.), Synergetics: From microscopic to macroscopic. Berlin: Springer.Google Scholar
  44. Dörner, D. (1989). Die Logik des Mißlingens: Strategisches Denken in komplexen Situationen. Reinbek bei Hamburg: Rowohlt.Google Scholar
  45. Elliott, J. G., Grigorenko, E. L., & Resing, W. C. M. (2010). Dynamic assessment. In B. McGraw, P. Peterson, & E. Baker (Hrsg.), International Encyclopedia of education (S. 220–225). Amsterdam: Elsevier.CrossRefGoogle Scholar
  46. Elshout, J. J. (1987). Problem solving and education. In E. de Corte (Hrsg.), Learning and instruction. European research in an international context (Studia paedagogica, 8, S. 259–273). Leuven: Leuven University Press & Pergamon.Google Scholar
  47. Engle, R. A. (2012). The resurgence of research into transfer: An introduction to the final articles of the transfer strand. The Journal of the Learning Sciences, 21(3), 347–352.CrossRefGoogle Scholar
  48. Farrington-Flint, L., Coyne, E., Stiller, J., & Heath, E. (2008). Variability in children’s early reading strategies. Educational Psychology, 28(6), 643–661.CrossRefGoogle Scholar
  49. Ferrara, R. A., Brown, A. L., & Campione, J. C. (1986). Children’s learning and transfer of inductive reasoning rules: Studies of proximal development. Child Development, 57(5), 1087–1099.CrossRefGoogle Scholar
  50. Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC. A Model of similarity-based retrieval. Cognitive Science, 19(2), 141–205.CrossRefGoogle Scholar
  51. Fritz, A., Hussy, W., & Bartels, S. (1997). Ein spielbasiertes Training zur Verbesserung der Planungsfähigkeit bei Kindern (Training the planning skills of children by a playing-based program). Psychologie in Erziehung und Unterricht, 2, 210–221.Google Scholar
  52. Funke, J. (2003). Problemlösendes Denken (Kohlhammer Standards Psychologie, 1. Aufl.). Stuttgart: Kohlhammer.Google Scholar
  53. Gallagher, A. M., de Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., & Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75(3), 165–190.CrossRefGoogle Scholar
  54. Gentner, D. (1989). The mechanisms of analogical learning. In A. Ortony & S. Vosniadou (Hrsg.), Similarity and analogical reasoning (S. 199–241). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306–355.CrossRefGoogle Scholar
  56. Goswami, U. (1992). Analogical reasoning in children. Hove: Erlbaum.Google Scholar
  57. Gray, W. D. (2002). Simulated task environments. Cognitive Science Quarterly, 2, 205–227.Google Scholar
  58. Greeno, J. G. (1974). Hobbits and orcs. Acquisition of a sequential concept. Cognitive Psychology, 6(2), 270–292.CrossRefGoogle Scholar
  59. Grigorenko, E. L. (2009). Dynamic assessment and response to intervention. Two sides of one coin. Journal of learning disabilities, 42(2), 111–132.CrossRefGoogle Scholar
  60. Grigorenko, E. L., & Sternberg, R. J. (1998). Dynamic testing. Psychological Bulletin, 124(1), 75–111.CrossRefGoogle Scholar
  61. Gürtler, T., Perels, F., Schmitz, B., & Bruder, R. (2003). Training zur Förderung selbstregulativer Fähigkeiten in Kombination mit Problemlösen in Mathematik. In J. Doll & M. Prenzel (Hrsg.), Bildungsqualität von Schule. Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und einfacher Kompetenzen (S. 222–240). Beltz: Weinheim.Google Scholar
  62. Haglund, J., Jeppsson, F., & Andersson, J. (2012). Young children’s analogical reasoning in science domains. Science Education, 96(4), 725–756.CrossRefGoogle Scholar
  63. Haider, G., & Reiter, C. (Hrsg.). (2004). PISA 2003 – Internationaler Vergleich von Schülerleistungen. Nationaler Bericht. Graz: Leykam.Google Scholar
  64. Harpaz-Itay, Y., Kaniel, S., & Ben-Amram, E. (2006). Analogy construction versus analogy solution, and their influence on transfer. Learning and Instruction, 16, 583–591.CrossRefGoogle Scholar
  65. Hays, R. T., & Singer, M. J. (1989). Simulation fidelity in training system design. Bridging the gap between reality and training (N). New York: Springer.CrossRefGoogle Scholar
  66. Haywood, H. C., & Lidz, C. S. (2007). Dynamic assessment in practice. Clinical and educational applications. Cambridge: Cambridge University Press.Google Scholar
  67. Higgins, S. (2015). A recent history of teaching thinking. In R. Wegerif, L. Li & J. C. Kaufman (Hrsg.), The Routledge international handbook of research on teaching thinking (S. 19–28). New York: Routledge.Google Scholar
  68. Holyoak, K. J. (1984). Analogical thinking and human intelligence. Advances in the Psychology of Human Intelligence, 2, 199–230.Google Scholar
  69. Holyoak, K. J., & Nisbett, R. E. (1988). Induction. In R. J. Sternberg & E. E. Smith (Hrsg.), The psychology of thinking (S. 50–91). Cambridge: Cambridge University Press.Google Scholar
  70. Holyoak, K. J., Junn, E. N., & Billman, D. O. (1984). Development of analogical problem-solving skill. Child Development, 55(6), 2042.CrossRefGoogle Scholar
  71. Hunt, R. G., Krzystofiak, F. J., Meindl, J. R., & Yousry, A. M. (1989). Cognitive style and decision making. Organizational Behavior and Human Decision Processes, 44(3), 436–453.CrossRefGoogle Scholar
  72. Hüther, G., & Quarch, C. (2016). Rettet das Spiel! Weil Leben mehr als Funktionieren ist. München: Hanser.CrossRefGoogle Scholar
  73. Jacobs, P. I., & Vandeventer, M. (1971). The learning and transfer of double-classification skills. A replication and extension. Journal of Experimental Child Psychology, 12(2), 240–257.CrossRefGoogle Scholar
  74. Jeffries, R., Polson, P. G., Razran, L., & Atwood, M. E. (1977). A process model for Missionaries-Cannibals and other river-crossing problems. Cognitive Psychology, 9(4), 412–440.CrossRefGoogle Scholar
  75. Jeffries, R., Turner, A., Polson, P., & Atwood, M. E. (1981). The process involved in designing software. In J. R. Anderson (Hrsg.), Cognitive skills and their acquisition (S. 255–283). Hillsdale: Erlbaum.Google Scholar
  76. Jeltova, I., Birney, D., Fredine, N., Jarvin, L., Sternberg, R. J., & Grigorenko, E. L. (2011). Making instruction and assessment responsive to diverse students’ progress: Group-administered dynamic assessment in teaching mathematics. Journal of Learning Disabilities, 44(4), 381–395.CrossRefGoogle Scholar
  77. Johnson, E. J. (1988). Expertise and decision under uncertainty: Performance and progress. In M. T. H. Chi, R. Glaser & M. J. Farr (Hrsg.), The nature of expertise (S. 209–228). Hillsdale: Erlbaum.Google Scholar
  78. Kersting, M. (1999). Diagnostik und Personalauswahl mit computergestützten Problemlöseszenarien? Zur Kriteriumsvalidität von Problemlöseszenarien und Intelligenztests. Göttingen: Hogrefe.Google Scholar
  79. Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text. A production-system analysis of transfer of training. Journal of Memory and Language, 25(5), 507–524.CrossRefGoogle Scholar
  80. Kim, K., Bae, J., Nho, M.-W., & Lee, C. H. (2012). „How do experts and novices differ? Relation versus attribute and thinking versus feeling in language use“: Correction to Kim, Bae, Nho, and Lee (2011). Psychology of Aesthetics, Creativity and the Arts, 6(1), 42.CrossRefGoogle Scholar
  81. Klahr, D., & Robinson, M. (1981). Formal assessment of problem-solving and planning processes in preschool children. Cognitive Psychology, 13(1), 113–148.CrossRefGoogle Scholar
  82. Klauer, K. J. (1992). Teaching inductive thinking to highly able children. European Journal for High Ability, 3(2), 164–180.CrossRefGoogle Scholar
  83. Klauer, K. J. (2014). Training des induktiven Denkens – Fortschreibung der Metaanalyse von 2008. Zeitschrift für Pädagogische Psychologie, 28(1–2), 5–19.CrossRefGoogle Scholar
  84. Klauer, K. J., & Phye, G. D. (2008). Inductive reasoning. A training approach. Review of Educational Research, 78(1), 85–123.CrossRefGoogle Scholar
  85. Klauer, K. C., Draine, S. C., & Greenwald, A. G. (1998). An unbiased errors-in-variables approach to detecting unconscious cognition. British Journal of Mathematical and Statistical Psychology, 51(2), 253–267.CrossRefGoogle Scholar
  86. Kluwe, R. H., Misiak, C., & Haider, H. (1990). Learning by doing in the control of a complex system. In H. Mandl & E. de Corte (Hrsg.), Analysis of complex skills and complex knowledge domains. Selection of papers from the Second European Conference for Research on Learning and Instruction held in Tübingen, West Germany, in September 1987 (Learning and instruction, European research in an international context, vol. 2,2). Oxford: Pergamon.Google Scholar
  87. Kohnstamm, G. A. (2014). Jean Piaget: Children and the inclusion problem. New Brunswick: Transactions.Google Scholar
  88. Koruklu, N. (2014). Personality and social problem-solving. The mediating role of self-esteem. Educational Sciences: Theory und Practice, 15(2), 481–487.Google Scholar
  89. Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some problems hard? Evidence from Tower of Hanoi. Cognitive Psychology, 17(2), 248–294.CrossRefGoogle Scholar
  90. Kreitler, S., & Kreitler, H. (1987). Conceptions and processes of planning: The developmental perspective. In S. L. Friedman, E. K. Scholnick & R. R. Cooking (Hrsg.), Blueprints for thinking (S. 205–272). Cambridge: Cambridge University Press.Google Scholar
  91. Kritz, W. C. (2000). Lernziel: Systemkompetenz. Planspiele als Trainingsmethode. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  92. Larkin, J. H. (1983). The role of problem representation in physics. In D. Genter & A. Collins (Hrsg.), Mental models (S. 75–98). Hillsdale: Erlbaum.Google Scholar
  93. Larsen-Freeman, D. (2013). Transfer of learning transformed. Language Learning, 63(1), 107–129.CrossRefGoogle Scholar
  94. Leutner, D. (2002). The fuzzy relationship of intelligence and problem solving in computer simulations. Computers in Human Behavior, 18(6), 685–697.CrossRefGoogle Scholar
  95. Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., & Miller, B. L. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16(2), 260–271.CrossRefGoogle Scholar
  96. Müller, H., & Zumbach, J. (2012). Probleme selbst lösen oder lösen lassen? Wenn ein aktives Problemlösen zu schlechteren Lernleistungen führt. https://www.sbg.ac.at/mediaresearch/zumbach/download/2011_2012/Mueller_Zumbach12.pdf. Zugegriffen am 25.11.2017.
  97. Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation. In J. R. Anderson (Hrsg.), Cognitive skills and their acquisition (S. 57–84). Hillsdale: Erlbaum.Google Scholar
  98. Newell, A. (1980). One final world. In D. T. Tuma (Hrsg.), Problem solving and education. Issues in teaching and research; proceedings of a conference held at Pittsburgh, Oct. 9–10, 1978 (S. 175–189). Hillsdale: Erlbaum.Google Scholar
  99. Newell, A., & Rosenbloom, P. S. (1981). Mechanism of skill aquisition and the law of practice. In J. R. Anderson (Hrsg.), Cognitive skills and their acquisition (S. 1–55). Hillsdale: Erlbaum.Google Scholar
  100. OECD. (2014). PISA 2012 results: Creative problem solving: Students’ skills in tackling real-life problems (Bd. V). PISA: OECD.Google Scholar
  101. Opfer, J. E., & Thompson, C. A. (2008). The trouble with transfer. Insights from microgenetic changes in the representation of numerical magnitude. Child Development, 79(3), 788–804.CrossRefGoogle Scholar
  102. Otto, J. H., & Lantermann, E.-D. (2004). Wahrgenommene Beeinflussbarkeit von negativen Emotionen, Stimmung und komplexes Problemlösen. Zeitschrift für Differentielle und Diagnostische Psychologie, 25(1), 31–46.CrossRefGoogle Scholar
  103. Otto, J. H., Döring-Seipel, E., & Lantermann, E.-D. (2002). Zur Bedeutung von subjektiven, emotionalen Intelligenzkomponenten für das komplexe Problemlösen. Zeitschrift für Differentielle und Diagnostische Psychologie, 23(4), 417–433.CrossRefGoogle Scholar
  104. Pellegrino, J., & Glaser, R. (1982). Analyzing aptitudes for learning: Inductive reasoning. Advances in Instructional Psychology, 2, 269–342.Google Scholar
  105. Perkins, D. N. (1992). Smart-schools: From training memories to educating minds. New York: Free Press.Google Scholar
  106. Perret, P. (2015). Children’s inductive reasoning: Developmental and educational perspectives. Journal of Cognitive Education and Psychology, 14(3), 389–408.CrossRefGoogle Scholar
  107. Perry, L. K., Samuelson, L. K., Malloy, L. M., & Schiffer, R. N. (2010). Learn locally, think globally. Exemplar variability supports higher-order generalization and word learning. Psychological Science, 21(12), 1894–1902.CrossRefGoogle Scholar
  108. Piaget, J. (1980). Psychologie der Intelligenz. Stuttgart: Klett-Cotta.Google Scholar
  109. Pittman, K. M. (1999). Student-generated analogies. Another way of knowing? Journal of Research in Science Teaching, 36(1), 1–22.CrossRefGoogle Scholar
  110. Raab, M. (2001). SMART. Techniken des Taktiktrainings, Taktiken des Techniktrainings (Wissenschaftliche Berichte und Materialien/Bundesinstitut für Sportwissenschaft, 1. Aufl., Bd. 4). Köln: Sport und Buch Strauß.Google Scholar
  111. Raaheim, K. (1988). Intelligence and task novelity. In R. J. Sternberg (Hrsg.), Advances in psychology of human intelligence (Bd. 4, S. 73–97). Hillsdale: Erlbaum.Google Scholar
  112. Reed, S. K., Ernst, G. W., & Banerji, R. (1974). The role of analogy in transfer between similar problem states. Cognitive Psychology, 6(3), 436–450.CrossRefGoogle Scholar
  113. Reeves, L. M., & Weisberg, R. W. (1993). On the concrete nature of human thinking. Content and context in analogical transfer. Educational Psychology, 13(3–4), 245–258.CrossRefGoogle Scholar
  114. Reitman, J. S. (1976). Skilled perception in go. Deducing memory structures from inter-response times. Cognitive Psychology, 8(3), 336–356.CrossRefGoogle Scholar
  115. Resing, W. C. M. (1993). Measuring inductive reasoning skills: The construction of a learning potential test. In J. H. M. Hamers, K. Sijtsma & A. J. J. M. Ruijssenaars (Hrsg.), Learning potential assessment. Theoretical, methodological and practical issues (S. 219–241). Amsterdam: Swets und Zeitlinger.Google Scholar
  116. Resing, W. C. M. (2013). Dynamic testing and individualized instruction. Helpful in cognitive education? Journal of Cognitive Education and Psychology, 12, 81–95.CrossRefGoogle Scholar
  117. Resing, W. C. M., & Elliott, J. G. (2011). Dynamic testing with tangible electronics. Measuring children’s change in strategy use with a series completion task. The British Journal of Educational Psychology, 81(4), 579–605.CrossRefGoogle Scholar
  118. Resing, W. C. M., Xenidou-Dervou, I., Steijn, W. M. P., & Elliott, J. G. (2012). A „picture“ of children’s potential for learning. Looking into strategy changes and working memory by dynamic testing. Learning and Individual Differences, 22(1), 144–150.CrossRefGoogle Scholar
  119. Resing, W. C. M., Tunteler, E., & Elliott, J. G. (2015). The effect of dynamic testing with electronic prompts and scaffolds on children’s inductive reasoning. A microgenetic study. Journal of Cognitive Education and Psychology, 14(2), 231–251.CrossRefGoogle Scholar
  120. Resing, W. C. M., Bakker, M., Pronk, C. M. E., & Elliott, J. G. (2016). Dynamic testing and transfer: An examination of children’s problem-solving strategies. Learning and Individual Differences, 49, 110–119.CrossRefGoogle Scholar
  121. Ross, B. H. (1987). This is like that. The use of earlier problems and the separation of similarity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(4), 629–639.Google Scholar
  122. Rost, P., & Wessel, A. (1994). „Mein Kind soll es einmal besser haben …“. Pädagogik und Schulalltag, 94, 218–224.Google Scholar
  123. Saarni, C. (1999). The development of emotional competence (The Guilford series on social and emotional development, 2. Aufl.). New York: Guilford.Google Scholar
  124. Salner-Gridling, I. (Hrsg.). (2009). Querfeldein. Individuell lernen – Differenziert lehren. Wien: ÖZEPS.Google Scholar
  125. Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. Review of Research in Education, 23(1), 1–24.CrossRefGoogle Scholar
  126. Schoenfeld, A. H. (1989). Mathematical thinking and problem solving (Studies in mathematical thinking and learning). Abingdon: Routledge.Google Scholar
  127. Schoppek, W. (1996). Kompetenz, Kontrollmeinung und komplexe Probleme. Zur Vorhersage. Bonn: Holos.Google Scholar
  128. Schwantner, U. (2013). Computerbasiertes Problemlösen im Geschlechtervergleich. In C. Schreiner, S. Salchegger & B. Suchan (Hrsg.), Internationaler Vergleich von Schülerleistungen Problemlösen, Mathematik und Lesen im elektronischen Zeitalter (S. 16–17). Graz: Leykam.Google Scholar
  129. Schwarzer, R. (1994). Optimistische Kompetenzerwartung: Zur Erfassung einer personellen Bewältigungsressource. Diagnostica, 40, 105–123.Google Scholar
  130. Schwippert, K. (2002). Optimalklassen: Mehrebenenanalytische Untersuchungen. Münster: Waxmann.Google Scholar
  131. Sell, R., & Schimweg, R. (2002). Probleme lösen. In komplexen Zusammenhängen denken (6. Aufl.). Berlin: Springer. http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10644823.CrossRefGoogle Scholar
  132. Shank, R. C., Berman, T. R., & Macpherson, K. A. (1999). Learning by doing. In C. M. Reigeluth (Hrsg.), Instructional-design theories and models: A new paradigm of instructional theory (Bd. II, S. 161–181). Mahwah: Erlbaum.Google Scholar
  133. Siegler, R. S. (2006). Microgenetic analysis of learning. In W. Damon & R. M. Lerner (Reihe Hrsg.), D. Kuhn & R. S. Siegler (Band Hrsg.), Handbook of child psychology: Bd. 2. Cognition, perception, and language (6. Aufl., S. 464–510). Hoboken: Wiley.Google Scholar
  134. Siegler, R. S. (2007). Cognitive variability. Developmental science, 10(1), 104–109.CrossRefGoogle Scholar
  135. Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries. A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397.CrossRefGoogle Scholar
  136. Siegler, R. S., & Svetina, M. (2002). A microgenetic/cross sectional study of matrix completion. Comparing short-term and log-term change. Child Development, 73, 793–809.CrossRefGoogle Scholar
  137. Slusarek, M. (1995). Neugier und Problemlösen. Zum Einfluß motivationaler Faktoren auf kognitive Fertigkeiten bei Vorschulkindern (Internationale Hochschulschriften, Bd. 156). Zugl.: Bochum, Univ., Diss., 1995. Münster: Waxmann.Google Scholar
  138. Stäudel. (1987). Problemlösen, Emotionen und Kompetenz. Regensburg: Roderer.Google Scholar
  139. Sternberg, R. J. (1982). Reasoning, problem solving and intelligence. In R. J. Sternberg (Hrsg.), Handbook of human intelligence (S. 225–307). Cambridge: Cambridge University Press.Google Scholar
  140. Stevenson, C. E., Hickendorff, M., Resing, W. C. M., Heiser, W. J., & De Boeck, P. A. L. (2013). Explanatory item response modeling of children’s change on a dynamic test of analogical reasoning. Intelligence, 41, 157–168.CrossRefGoogle Scholar
  141. Stevenson, C. E., Bergwerff, C. E., Heiser, W. J., & Resing, W. C. M. (2014). Working memory and dynamic measures of analogical reasoning as predictors of children’s math and reading achievement. Infant and Child Development, 23(1), 51–66.CrossRefGoogle Scholar
  142. Süß, H.-M. (1996). Intelligenz, Wissen und Problemlösen. Göttingen: Hogrefe.Google Scholar
  143. Süß, H.-M. (1999). Intelligenz und komplexes Problemlösen. Psychologische Rundschau, 50(4), 220–228.CrossRefGoogle Scholar
  144. Tunteler, E., & Resing, W. C. M. (2007). Change in spontaneous analogical transfer in young children. A microgenetic study. Infant and Child Development, 16(1), 71–94.CrossRefGoogle Scholar
  145. Tunteler, E., Pronk, C. M. E., & Resing, W. C. M. (2008). Inter- and intra-individual variability in the process of change in the use of analogical strategies to solve geometric tasks in children. A microgenetic analysis. Learning and Individual Differences, 18(1), 44–60.CrossRefGoogle Scholar
  146. Tzuriel, D. (2013). Mediated learning experience strategies and cognitive modifiability. Journal of Cognitive Education and Psychology, 13, 59–80.CrossRefGoogle Scholar
  147. Underwood, J., Underwood, G., & Wood, D. (2000). When does gender matter? Learning and Instruction, 10(5), 447–462.CrossRefGoogle Scholar
  148. Vester, F. (2015). Die Kunst vernetzt zu denken. Ideen und Werkzeuge für einen neuen Umgang mit Komplexität; ein Bericht an den Club of Rome; der neue Bericht an den Club of Rome (dtv Wissen, Bd. 33077, 10. Aufl.). München: Deutscher Taschenbuch.Google Scholar
  149. Vollmeyer, R., & Funke, J. (1999). Personen- und Aufgabenmerkmale beim komplexen Problemlösen. Psychologische Rundschau, 50(4), 213–219.CrossRefGoogle Scholar
  150. Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou & A. Ortony (Hrsg.), Similarity and analogical reasoning (S. 413–438). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  151. Zimmermann, P., & Spangler, G. (2001). Jenseits des Klassenzimmers. Der Einfluss der Familie auf Intelligenz, Motivation, Emotion und Leistung im Kontext der Schule. Zeitschrift für Pädagogik, 47(4), 461–479.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Ulrike Kipman
    • 1
  1. 1.Pädagogische Hochschule SalzburgSalzburgÖsterreich

Personalised recommendations