Advertisement

Gut zu wissen: Technologiegestütztes Lernen während der Arbeit

  • Guido KempterEmail author
  • Patrick Jost
  • Andreas Künz
Chapter

Zusammenfassung

Der Wissenstransfer gewinnt in Unternehmen zunehmend an Bedeutung. Der flexiblere Einsatz von Arbeitskräften, der sich aus der gestiegenen bedarfsabhängigen Produktion ergibt und auch mit dem Mangel an qualifizierten Arbeitskräften zusammenhängt, erfordert eine schnellere Ausbildung und Umschulung der Arbeitnehmer. Auch der demografische Wandel verleiht der Forderung Nachdruck, das interne Mitarbeiterwissen zu sichern. Die Erweiterung der Produktvarianten erhöht den Bedarf an Mitarbeiterkompetenz und erfordert auch mehr Kundenschulungen. Darüber hinaus führt der immer kürzere Produktlebenszyklus zu einem schnelleren Wissensverlust in einigen Produktionsbereichen. Weltweite Standorte und Absatzmärkte sowie die Steigerung der Produktqualität und der Produktionseffizienz im Vergleich zu den Mitbewerbern erhöhen ebenfalls den Aufwand des Wissenstransfers. Viele Unternehmen reagieren mit mehr Forschung und Entwicklung im Bereich des Lernens am Arbeitsplatz, um bestehende Arbeitsplätze zu sichern und trotz der wirtschaftlichen Herausforderungen auch neue Arbeitsplätze zu schaffen. Diese Schwerpunktsetzung ist notwendig, weil die Ausbildung am Arbeitsplatz erhebliches internes technologisches Know-how erfordert. Ein vielversprechender Ansatz ist das sogenannte Learning on the Fly, da es neben den normalen Arbeitsaktivitäten und in der täglichen Arbeitsorganisation, während der Einführungsphase der Arbeit sowie in der Routinephase der Arbeitsaktivitäten stattfinden kann.

Literatur

  1. Baumgartner, P. (2014). Lernen in Häppchen. Microlearning als Instrument der Personalentwicklung. Personal Manager – Zeitschrift für Human Resources, 1, 20–22.Google Scholar
  2. Baumgartner, P., & Ghoneim, A. (2014). Medienproduktion – Lernartefakte erarbeiten und Kompetenzen entwickeln. Medienproduktion: Online-Zeitschrift für Wissenschaft und Praxis (Oktober), S. 30–33. WWW. http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/jportal_derivate_00238954/MP_OZWP_2193-7699_2014-06.pdf.
  3. Bear, D. J., Tompson, H. B., Morrison, C. L., Vickers, M., Paradise, A., Czarnowsky, M., et al. (2008). Tapping the potential of informal learning: An ASTD research study. Alexandria: American Society for Training and Development.Google Scholar
  4. Bogdan, R., & Ancusa, V. (2016). Developing e-learning solutions in the automotive industry. World Journal on Educational Technology: Current Issues, 8 (2), 139–146.Google Scholar
  5. Duval, E., Sharples, M., & Sutherland, R. (Hrsg.). (2017). Technology enhanced learning: Research themes. New York: Springer.Google Scholar
  6. European Commission. (2015). High-performance apprenticeships & work-based learning: 20 guiding principles. http://ec.europa.eu/social/main.jsp?catId=1147&langId=&moreDocuments=yes. Zugegriffen: 16. Okt. 2017.
  7. Falk, S., Rexha, A., & Kern, R. (2016). Know-Center at SemEval-2016 task 5: Using word vectors with typed dependencies for opinion target expression extraction. In Proceedings of Iiternational workshop on semantic evaluation 2016 (S. 266–270). Stroudsburg: Association for Computational Linguistics.Google Scholar
  8. Fessl, A., Rivera-Pelayo, V., Müller, L., Pammer, V., & Lindstaedt, S. (2011). Motivation and user acceptance of using physiological data to support individual reflection. In 2nd International Workshop on Motivation and Affective Aspects in Technology Enhanced Learning (MATEL 2011), co-located with ECTEL.Google Scholar
  9. Frigo, M. A., da Silva, E. C. C., & Barbosa, G. F. (2016). Augmented reality in aerospace manufacturing: a review. Journal of Industrial and Intelligent Information, 4 (2), 125–130.Google Scholar
  10. Funk, M., Bächler, A., Bächler, L., Kosch, T., Heidenreich, T., & Schmidt, A. (2017). Working with augmented reality? A long-term analysis of in-situ instructions at the assembly workplace. In Proceedings of the 10th ACM international conference on pervasive technologies related to assistive environments, New York.Google Scholar
  11. Geiselhart, F., Otto, M., & Rukzioa, E. (2016). On the use of multi-depth-camera based motion tracking systems in production planning environments. In Procedia 48th CIRP Conference on Manufacturing Systems, 41, 759–764.CrossRefGoogle Scholar
  12. Grundschober, I., Baumgartner, P., Gruber-Mücke, T., & Sickinger R. (2016). A pattern language for tacit knowledge. In: PUARL conference (proceedings). https://drive.google.com/drive/folders/0B4I8ECUAe5tNRkhJVm11NUJtWGc.
  13. Haßler, B., Major, L., & Hennessy, S. (2015). Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted learning, 32 (2), 139–156.CrossRefGoogle Scholar
  14. Jackson, D., Rowbottom, D., Ferns, S., & MacLaren, D. (2017). Employer understanding of work-integrated learning and the challenges of engaging in work placement opportunities. Studies in Continuing Education, 39 (1), 35–51.CrossRefGoogle Scholar
  15. Kinshuk, C. N.-S., Cheng, I.-L., & Chew, S. W. (2016). Evolution is not enough: Revolutionizing current learning environments to smart learning environments. International Journal of Artificial Intelligence Education.  https://doi.org/10.1007/s40593-016-0108-x.CrossRefGoogle Scholar
  16. Kleindienst, M., Wolf, M., Ramsauer, C., & Pammer, V. (2016). What workers in industry 4.0 need and what ICT can give – An analysis. Human computer interaction perspectives on industry 4.0 at the 16th International Conference on Knowledge Technologies and Data- driven Business (i-KNOW 2016).Google Scholar
  17. Knipfer, K., Kump, B., Wessel, D., & Cress, U. (2013). Reflection as catalyst for organisational learning. Studies in Continuing Education, 35, 30–48.CrossRefGoogle Scholar
  18. Kraker, P., Kittel, C., & Enkhbaya, A. (2016). Open knowledge maps: Creating a visual interface to the world’s scientific knowledge based on natural language processing. Zeitschrift für Bibliothekskultur, 4 (2), 98–103.Google Scholar
  19. Krogstie, B. R., Prilla, M., Wessel, D., Knipfer, K., & Pammer, V. (2012). Computer support for reflective learning in the workplace: A model. 12th IEEE International Conference on Advanced Learning Technologies, ICALT 2012, Rome, Italy, 151–153.Google Scholar
  20. Llorente, R., & Morant, M. (2014). Wearable computers and big data: Interaction paradigms for knowledge building in higher education. In M. Peris-Ortiz, F. J. Garrigos-Simon, & I. G. Pechuan (Hrsg.), Innovation and teaching technologies (S. 127–138). Heidelberg: Springer.CrossRefGoogle Scholar
  21. Manuti, A., Pastore, S., Scardigno, A. F., Giancaspro, M. L., & Morciano, D. (2015). Formal and informal learning in the workplace: A research review. International Journal of Training and Development, 19 (1), 1–17.CrossRefGoogle Scholar
  22. Marsick, V. J., & Watkins, K. (1990). Informal and incidental learning in the workplace. New York: Taylor & Francis.Google Scholar
  23. Mikkonen, S., Pylväs, L., Rintala, H., Nokelainen, P., & Postare, L. (2017). Guiding workplace learning in vocational education and training: A literature review. Empirical Research on Vocational Education and Training, 9 (9), 1–22.Google Scholar
  24. Noe, R. A., & Ellingson, J. E. (Hrsg.). (2017). Autonomous learning in the workplace. New York: Taylor & Francis.Google Scholar
  25. Pammer, V., Krogstie, B., & Prilla. M. (2017). Let’s talk about reflection at work. International Journal of Technology Enhanced Learning, 9/2/3.  https://doi.org/10.1504/IJTEL.2017.084493.CrossRefGoogle Scholar
  26. Pierdicca, R., Frontoni, E., Pollini, R., Trani, M., & Verdini, L. (2017). The use of augmented reality glasses for the application in industry 4.0. In L. De Paolis, P. Bourdot, & A. Mongelli (Hrsg.), Augmented reality, virtual reality, and computer graphics. AVR 2017. Lecture Notes in Computer Science, Bd. 10324. Cham: Springer.Google Scholar
  27. Ross, E., Romich, R., & Pena, J. (2016). Working towards the future: Technology use and evaluation in workforce development. In G. Chamblee & L. Langub (Hrsg.), Proceedings of Society for Information Technology & Teacher Education International Conference (S. 1278–1282).Google Scholar
  28. Sambrook, S. (2005). Factors influencing the context and process of work-related learning: Synthesizing findings from two research projects. Human Resource Development International, 8, 101–119.CrossRefGoogle Scholar
  29. Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go. Psychological Bulletin, 137 (3), 421–422.CrossRefGoogle Scholar
  30. Thomä, J. (2017). DUI mode learning and barriers to innovation – A case from Germany. Research Policy, 46 (7), 1327–1339.CrossRefGoogle Scholar
  31. UNESCO. (2005). NFE-MIS Handbook. Developing a sub-national non-formal education management information system. Module 1. Paris: UNESCO, Division of Basic Education.Google Scholar
  32. Wang, M. (2017). Emerging technologies for workplace learning. In M. Wang (Hrsg.), E-Learning in the Workplace (S. 29–39). New York: Springer.Google Scholar
  33. Ward, J. (2013). How fabricators can foster real growth. Fabricating Metalworking.Google Scholar
  34. Wild, F., Klemke, R., Lefrere, P., Fominykh, M. & Kuula, T. (2017). Technology acceptance of augmented reality and wearable technologies. In Proceedings of international conference on immersive learning, S. 129–141. Cham: Springer.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.FHS VorarlbergDornbirnÖsterreich

Personalised recommendations