Advertisement

Investigation of the run-in and corrosion behavior of a PEO-coated aluminum brake disc

  • F. Gulden
  • B. Reinhold
  • Sebastian Gramstat
  • A. Stich
  • U. Tetzlaff
  • H. W. Höppel
Conference paper
Part of the Proceedings book series (PROCEE)

Abstract

Plasma electrolytic oxidation (PEO) is a relatively new electrochemical surface treatment process for the generation of oxide coatings on metals such as Aluminum or Magnesium. Most of the papers, referring to the PEO process, were published in the eighties of the previous century [2, 3]. Nowadays, the process is used for a wide range of applications in various industrial fields [4]. In plasma electrolytic oxidation higher voltages are applied than in the anodizing process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] F. Gulden, S. Gramstat, A. Stich, H.W. Höppel, U. Tetzlaff, “Properties and Limitation of an Oxide Coated Aluminum Brake Rotor,” SAE Technical Paper 2018-01-1877, 2018,  https://doi.org/10.4271/2018-01-1877.
  2. [2] P. Kurze, H.G. Schneider, T. Schwarz, W. Krysman, Metalloberfläche 40 (12) (1986) p. 539.Google Scholar
  3. [3] A. L. Yerokhin, X. Nie, A. Leyland A. Matthews, S. J. Dowey, Surface and Coatings Technology 122 (1999) 73-93.Google Scholar
  4. [4] S. Shrestha and B. D. Dunn, “Advanced plasma electrolytic oxidation treatment for protection of lightweight materials and structures in a space environment”, Surface World, 2017.Google Scholar
  5. [5] C. Liu, D. He, Q. Yin, Z. Huang, P. Liu, D. Li, G. Jiang, H. Ma, P. Nash, D. Shen, Surface and Coatings Technology 280 (2015) pp. 86-91.Google Scholar
  6. [6] R. O. Hussein, X. Nie, D. O. Northwood, A. Yerokhin, A. Mattthews, Journal of Vacuum Science & Technology A 28 (4) (2010) pp. 766-773.Google Scholar
  7. [7] U. Malayoglu, K. C. Tekin, U. Malayoglu, S. Shrestha - Materials Science and Engineering A 528 (2011) pp. 7451– 7460.Google Scholar
  8. [8] J.A. Curran and T.W. Clyne, Surface & Coatings Technology 199 (2005) pp. 168 – 176.Google Scholar
  9. [9] X. Nie, E.I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, A. Matthews, Surface and Coatings Technology 149 (2002) pp. 245-251.Google Scholar
  10. [10] Y. Jiang, Y. Zhang, Y. Boa, K. Yang, Wear 271 (2011) pp. 1667-1670.Google Scholar
  11. [11] T. Wei, F. Yan, J. Tian – Journal of Alloys and Compounds 389 (2005) pp. 169-176.Google Scholar
  12. [12] A. Alnaqi, S. Kosarieh, D. C. Barton, P. C. Brooks, S. Shrestha, Journal of Materials Design and Applications, 232 (7). (2016) pp. 555-565.Google Scholar
  13. [13] S. Gramstat, R. Waninger, D. Lugovyy, M. Schröder, T. Grigoratos, “Brake particle emissions – A global challenge”, 9th International Munich Chassis Symposium 2018, pp.649-661.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • F. Gulden
    • 1
  • B. Reinhold
    • 3
  • Sebastian Gramstat
    • 3
  • A. Stich
    • 3
  • U. Tetzlaff
    • 2
  • H. W. Höppel
    • 1
  1. 1.Materials Science & Engineering, Institute IFriedrich‑Alexander‑Universität Erlangen-Nürnberg (FAU)Erlangen-NürnbergGermany
  2. 2.Technische Hochschule Ingolstadt (THI)IngolstadtGermany
  3. 3.AUDI AGIngolstadtGermany

Personalised recommendations