Advertisement

Simplified modeling of self-excited rear axle wheel shimmy vibrations by using the Proper Orthogonal Decomposition (POD)

  • Sebastian WagnerEmail author
  • Johannes Mayet
  • Dieter Schramm
Conference paper
Part of the Proceedings book series (PROCEE)

Abstract

Vehicles are subject to a variety of requirements, of which the technical objectives are only a subfield. In addition, the different sub-areas increasingly interact with each other, whereby the complexity of the development process of a vehicle continuously rises. In particular, components with a high degree of interaction must therefore be considered overall with regard to all influences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1] Kerschen, G.; Golinval, J.-C.; Vakakis, A. F.; Bergman, L. A.: The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview. Nonlinear Dynamics (2005) 41: 147–169.Google Scholar
  2. [2] Königs, S.; Zimmermann, M.: Resolving Conflicts of Goals in Complex Design Processes – Application to the Design of Engine Mount Systems. 7th International Munich Chassis Symposium, Springer Verlag, 2016.Google Scholar
  3. [3] Kreuzer, E.; Kust, O.: Analysis of long torsional strings by proper orthogonal decomposition. Archive of Applied Mechanics, 68-80, 1996.Google Scholar
  4. [4] Markert, R.: Strukturdynamik – Skript zur Vorlesung. Darmstadt, 2010.Google Scholar
  5. [5] Mastinu, G.; Gobbi, M.; Miano, C.: Optimal Design of Complex Mechanical Systems. Springer Verlag, 2006.Google Scholar
  6. [6] Pruscha, H.: Angewandte Methoden der Mathematischen Statistik – Lineare, loglineare, logistische Modelle Finite und asymptotische Methoden. Vieweg und Teubner Verlag, 1996.Google Scholar
  7. [7] Quaranta, G.; Mantegazza, P.; Masarati, P.: Assessing the local stability of periodic motions for large multibody nonlinear systems using proper orthogonal decomposition. Journal of Sound and Vibration, Volume 271. Issues 3-5, 2004, Pages 2015 – 1038.Google Scholar
  8. [8] Rooch, A.: Statistik für Ingenieure. Springer Verlag, 2014.Google Scholar
  9. [9] Schramm, D.; Hiller, M.; Bardini, R.: Modellbildung und Simulation der Dynamik von Kraftfahrzeugen. Springer-Verlag, Wiesbaden, 3. Auflage, 2018.Google Scholar
  10. [10] Steindl, A.; Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. International Journal of Solids and Structures, 2131-2147. 2001.Google Scholar
  11. [11] Wagner, S.; Vena, G.; Schramm, D.: Simplified model for self-excited rear-axlevibrations. Proceedings zum 18. Internationalen Stuttgarter Symposium, Springer Fachmedien Wiesbaden, 2018.Google Scholar
  12. [12] Zeller, P.: Handbuch Fahrzeugakustik. Vieweg + Teubner Verlag, Wiesbaden, 2. Auflage, 2012.Google Scholar
  13. [13] Zimmermann, M. et al.: On the design of large systems subject to uncertainty. Journal of Engineering Design, 1466 – 1837, Taylor and Francis, 2017.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • Sebastian Wagner
    • 1
    Email author
  • Johannes Mayet
    • 1
  • Dieter Schramm
    • 2
  1. 1.BMW GroupMunichGermany
  2. 2.University of Duisburg-EssenDuisburg-EssenGermany

Personalised recommendations