Simplified modeling of self-excited rear axle wheel shimmy vibrations by using the Proper Orthogonal Decomposition (POD)

  • Sebastian WagnerEmail author
  • Johannes Mayet
  • Dieter Schramm
Conference paper
Part of the Proceedings book series (PROCEE)


Vehicles are subject to a variety of requirements, of which the technical objectives are only a subfield. In addition, the different sub-areas increasingly interact with each other, whereby the complexity of the development process of a vehicle continuously rises. In particular, components with a high degree of interaction must therefore be considered overall with regard to all influences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] Kerschen, G.; Golinval, J.-C.; Vakakis, A. F.; Bergman, L. A.: The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview. Nonlinear Dynamics (2005) 41: 147–169.Google Scholar
  2. [2] Königs, S.; Zimmermann, M.: Resolving Conflicts of Goals in Complex Design Processes – Application to the Design of Engine Mount Systems. 7th International Munich Chassis Symposium, Springer Verlag, 2016.Google Scholar
  3. [3] Kreuzer, E.; Kust, O.: Analysis of long torsional strings by proper orthogonal decomposition. Archive of Applied Mechanics, 68-80, 1996.Google Scholar
  4. [4] Markert, R.: Strukturdynamik – Skript zur Vorlesung. Darmstadt, 2010.Google Scholar
  5. [5] Mastinu, G.; Gobbi, M.; Miano, C.: Optimal Design of Complex Mechanical Systems. Springer Verlag, 2006.Google Scholar
  6. [6] Pruscha, H.: Angewandte Methoden der Mathematischen Statistik – Lineare, loglineare, logistische Modelle Finite und asymptotische Methoden. Vieweg und Teubner Verlag, 1996.Google Scholar
  7. [7] Quaranta, G.; Mantegazza, P.; Masarati, P.: Assessing the local stability of periodic motions for large multibody nonlinear systems using proper orthogonal decomposition. Journal of Sound and Vibration, Volume 271. Issues 3-5, 2004, Pages 2015 – 1038.Google Scholar
  8. [8] Rooch, A.: Statistik für Ingenieure. Springer Verlag, 2014.Google Scholar
  9. [9] Schramm, D.; Hiller, M.; Bardini, R.: Modellbildung und Simulation der Dynamik von Kraftfahrzeugen. Springer-Verlag, Wiesbaden, 3. Auflage, 2018.Google Scholar
  10. [10] Steindl, A.; Troger, H.: Methods for dimension reduction and their application in nonlinear dynamics. International Journal of Solids and Structures, 2131-2147. 2001.Google Scholar
  11. [11] Wagner, S.; Vena, G.; Schramm, D.: Simplified model for self-excited rear-axlevibrations. Proceedings zum 18. Internationalen Stuttgarter Symposium, Springer Fachmedien Wiesbaden, 2018.Google Scholar
  12. [12] Zeller, P.: Handbuch Fahrzeugakustik. Vieweg + Teubner Verlag, Wiesbaden, 2. Auflage, 2012.Google Scholar
  13. [13] Zimmermann, M. et al.: On the design of large systems subject to uncertainty. Journal of Engineering Design, 1466 – 1837, Taylor and Francis, 2017.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020

Authors and Affiliations

  • Sebastian Wagner
    • 1
    Email author
  • Johannes Mayet
    • 1
  • Dieter Schramm
    • 2
  1. 1.BMW GroupMunichGermany
  2. 2.University of Duisburg-EssenDuisburg-EssenGermany

Personalised recommendations