Advertisement

Social Bots – Act Like a Human, Think Like a Bot

  • Birgit ObererEmail author
  • Alptekin Erkollar
  • Anna Stein
Chapter
Part of the Europäische Kulturen in der Wirtschaftskommunikation book series (EKW, volume 31)

Zusammenfassung

A social bot is a piece of software designed to have a presence on the Internet, especially on social media. Bots are algorithms acting on social media networks, engineered to achieve some purpose, and programmed to appear as real people on social networks, tweeting, having followers and using matching Facebook accounts. They are designed to make something seem to be happening that is not, or looking like persons to promote specific messages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abokhodair N./Yoo D./McDonald DW. (2015) Dissecting a social botnet: growth, content, and influence in twitter, Proceedings of the 18th ACM conference on computer supported cooperative work & social computing, ACM: 839-851.Google Scholar
  2. Aiello, L.M./ Deplano, M./Schifanella, R./Ruffo, G. (2012). People are strange when you’re a stranger: Impact and influence of bots on social networks. In Proceedings of the 6th AAAI International Conference on Weblogs and Social Media: 10-17.Google Scholar
  3. Alotibi G./Li F./Clarke N./Furnell S. (2015). Behavioral-based feature abstraction from network traffic, in ICCWS 2015-The proceedings of the 10th international conference on cyber warfare and security, Academic Conferences Limited, 2015: 1.Google Scholar
  4. Alves de Lima Sarge, C./Berente, N. (2017) Computing Ethics. Is That Social Bot Behaving Unethically? A procedure for reflection and discourse on the behavior of bots in the context of law, deception, and societal norms. Communications of the ACM, 60(9): 29-31.CrossRefGoogle Scholar
  5. Baltazar J./ Costoya J./Flores R. (2009). The real face of koobface: the largest web 2.0 botnet explained. Trend Micro Research (9):10.Google Scholar
  6. Bollen, J./Mao, H./Zeng, X. (2011). Twitter mood predicts the stock market. J. Computational Science 2, 1: 1-8.CrossRefGoogle Scholar
  7. Boshmaf, Y./Muslukhov, I../Beznosov, K./Ripeanu, M. (2013). Design and analysis of a social botnet. Computer Networks 57, 2: 556-578.CrossRefGoogle Scholar
  8. Brito F./Petiz I./Salvador P./Nogueira A./Rocha E. (2013) Detecting social-network bots based on multiscale behavioral analysis, SECURWARE, The seventh international conference on emerging security information, systems and technologies: 81-85.Google Scholar
  9. Burghouwt P./Spruit M., Sips H. (2011). Towards detection of botnet communication through social media by monitoring user activity. Proceedings of the 7th international conference on information systems security, ICISS′11: 131-143.Google Scholar
  10. Cassa, C.A., Chunara, R., Mandl, K. and Brownstein, J.S. (2013). Twitter as a sentinel in emergency situations: Lessons from the Boston marathon explosions. PLoS Currents: Disasters (July 2013); http://dx.doi.org/10.1371/currents.dis.ad70cd1c8bc585e9470046cde334ee4b.
  11. Clarke, R. (1994). The Digital Persona and its Application to Data Surveillance. In: The Information Society: 77-92.CrossRefGoogle Scholar
  12. Conover, M./Ratkiewicz, J./Francisco, M./Gonçalves, B./Menczer, F. and Flammini, A. (2011). Political polarization on Twitter. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media: 89-96.Google Scholar
  13. Cossu, J.-V./Labatut, V./Dugué, N. (2016): A review of features for the discrimination of Twitter users: application to the prediction of offline influence. Soc. Netw. Anal. Min.6: 1-23.Google Scholar
  14. Cossu, J.V./Dugue, N./Labatut, V. (2015): Detecting real-world influence through Twitter. Proceedings - 2nd European Network Intelligence Conference, 2015, 83-90.Google Scholar
  15. Davis, C./Varol, O./Ferrara, E./Menczer, F./Flammini, A. (2016). Bot Or Not: A System to Evaluate Social Bots, Proceedings of the 25th International Conference Companion on World Wide Web, April 11-15 2016, Montreal, Canada: 273-274.Google Scholar
  16. Dietrich CJ./Rossow C./Pohlmann N. (2013) Cocospot: clustering and recognizing botnet command and control channels using traffic analysis. Comput Netw 57(2): 475-486.CrossRefGoogle Scholar
  17. Edwards, C./Edwards, A./Spence, P.R./Shelton, A.K. (2014). Is that a bot running the social media feed? Testing the differences in perceptions of communication quality for a human agent and a bot agent on Twitter. Computers in Human Behavior 33: 372-376.CrossRefGoogle Scholar
  18. Ferrara, E./Varol, O./Davis, C./Menczer, F./Flammini, A. (2016). The Rise of Social Bots, in: Communications of the ACM, Vol. 59, Nr. 7: 96-104.CrossRefGoogle Scholar
  19. Grimme, C./Preuss, M./Adam, L./Trautmann, H. (2017) Social Bots: Human-Like by Means of Human Control? Big Data 5(4): 279-293.CrossRefGoogle Scholar
  20. Hwang, T./Pearce, I. and Nanis, M. (2012). Socialbots: Voices from the fronts. ACM Interactions 19, 2: 38-45.CrossRefGoogle Scholar
  21. Kramer, A.D./Guillory, J.E. and Hancock, J.T. (2014) Experimental evidence of massive-scale emotional contagion through social networks. In Proceedings of the National Academy of Sciences.Google Scholar
  22. Lee, K./Eoff, B.D. and Caverlee, J. (2011). Seven months with the devils: A long-term study of content polluters on Twitter. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media: 185-192.Google Scholar
  23. Li, B./He, J./Huang, J./Shi, YQ. (2011). A survey on image steganography and steganalysis. JIHMSP. 2(2):142-172.Google Scholar
  24. Metaxas, P.T./Mustafaraj, E. (2012). Social media and the elections. Science 338, 6106: 472-473.CrossRefGoogle Scholar
  25. Misener, D. (2011) Rise of the socialbots: They could be influencing you online. CBC News, 29. March 2011. Online http://www.cbc.ca/news/technology/rise-of-the-socialbots-they-could-be-influencing-you-online-1.981796. Accessed: 25 Feb 2018.
  26. Nappa, A./Xu, Z./Rafique, M.Z./Caballero, J./ Gu, G.(2014). Cyberprobe: towards internet-scale active detection of malicious servers, Network and Distributed System Security (NDSS) Symposium: 1-15.Google Scholar
  27. Natarajan V./Sheen S./Anitha R. (2012) Detection of stegobot: a covert social network botnet, in Proceedings of the first international conference on security of internet of things, ACM: 36-41.Google Scholar
  28. Paavola, J./Helo, T./Jalonen, H./Sartonen, M./Huhtinen, A.K. (2016). The Automated Detection of Trolling Bots and Cyborgs and the Analysis of Their Impact in the Social Media, in Proceedings of the 15th European Conference on Cyber Warfare and Security, 7-8 July 2016, Munich, Germany: 237-245.Google Scholar
  29. Ratkiewicz, J./Conover, M./Meiss, M./Gonçalves, B./Flammini, A. and Menczer, F. (2011). Detecting and tracking political abuse in social media. In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media: 297-304.Google Scholar
  30. Ratkiewicz, J./Conover, M./Meiss, M./Gonçalves, B./Patil, S./Flammini, A./Menczer, F. (2011) Truthy: mapping the spread of astroturf in microblog streams. Proceedings of 20th International Conference Companion World Wide Web (WWW 2011): 249-252.Google Scholar
  31. Seymour, J./Tully, P. (2016). Weaponizing Data Science for Social Engineering: Automated E2E Spear Phishing on Twitter. Online: https://www.blackhat.com/docs/us-16/materials/us-16-Seymour-Tully-Weaponizing-Data-Science-For-Social-Engineering-Automated-E2E-Spear-Phishing-On-Twitter-wp.pdf. Accessed: 25 Feb 2018.
  32. Stein T./Chen E./Mangla K.(2011) Facebook immune system, Proceedings of the 4th workshop on social network systems: 8.Google Scholar
  33. Stieglitz, S./Brachten, F./Berthele, D./Schlaus, M./Venetopoulou, C./Veutgen, D. (2017) Do Social Bots (Still) Act Different to Humans? Comparing Metrics of Social Bots with Those of Humans, G. Meiselwitz (Ed.): SCSM 2017, Part I, Springer, LNCS 10282: 379-395.Google Scholar
  34. Turing, A.M. (1950). Computing machinery and intelligence. Mind 49, 236: 433-460.CrossRefGoogle Scholar
  35. Weizenbaum, J. (1966). ELIZA - A computer program for the study of natural language communication between man and machine. Commun. ACM 9, 1: 36-45.CrossRefGoogle Scholar
  36. Wu, X./Feng, Z./Fan, W./Gao, J. and Yu, Y. (2013). Detecting marionette microblog users for improved information credibility. Machine Learning and Knowledge Discovery in Databases. Springer: 483-498.Google Scholar
  37. Zhang J./Zhang R./Zhang Y./Yan G. (2013). On the impact of social botnets for spam distribution and digital-influence manipulation, in: Communications and Network Security (CNS), 2013 IEEE conference on, IEEE: 46-54.Google Scholar
  38. Zhang, J./Carpenter, D./Ko, M. (2013) Online astroturfing: a theoretical perspective. In: 19th American Conference on Information Systems, AMCIS 2013, 4: 2559-2565.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.SakaryaTürkei
  2. 2.LuzernSchweiz

Personalised recommendations