Benefits of Real-Time Monitoring and Process Mining in a Digitized Construction Supply Chain

  • A. J. SpenglerEmail author
  • C. Alias
  • E. G. C. Magallanes
  • A. Malkwitz


The building industry is becoming digitized, this can be seen from the current general attention around Building Information Modelling (BIM). BIM is strongly planning-oriented though. For many other applications, the methodology must be extended and adapted. As a result of digitization, the flow of information is increasing strongly leading to new processes, tasks, and services. As this occurs in an interdisciplinary process, the data can be handled only in an interdisciplinary way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] Construction Excellence (2004) Construction Logistics: Models for consolidationGoogle Scholar
  2. [2] Methanivesana N, Matouzko V (2012) Improving Construction Logistics: A case study of Residential Building ProjectGoogle Scholar
  3. [3] Helmus M, Kelm A, Laußat L et al. (2009) RFID in der Baulogistik: Forschungsbericht zum Projekt „Integriertes Wertschöpfungsmodell mit RFID in der Bau- und Immobilienwirtschaft“, 1. Aufl. Vieweg+Teubner Verlag / GWV Fachverlage GmbH Wiesbaden, WiesbadenGoogle Scholar
  4. [4] Baptista Serra SM, José de Oliveira O (eds) (2003) Development of the logistics plans in building constructionGoogle Scholar
  5. [5] Agapiou A, Clausen LE, Flanagan R et al. (1998) The role of logistics in the materials flow control process. Construction Management and Economics 16(2): 131–137. Scholar
  6. [6] Sobotka A, Czarnigowska A, Stefaniak K (2005) Logistics of Construction Projects. Foundations of Civil and Environmental EngineeringGoogle Scholar
  7. [7] Ala-Risku T, Kärkkäinen M (2006) Material delivery problems in construction projects: A possible solution. International Journal of Production Economics 104(1): 19–29. Scholar
  8. [8] Behera P, Mohanty RP, Prakash A (2015) Understanding Construction Supply Chain Management. Production Planning & Control: The Management of Operations 26(16): 1332–1350. Scholar
  9. [9] Papadopoulos GA, Zamer N, Gayialis SP et al. (2016) Supply Chain Improvement in Construction Industry. Universal Journal of Management 4(10): 528–534. Scholar
  10. [10] Patel KV, Vyas CM (2011) Construction Material Management on Project Sites. In: National Conference on Recent Trends in Engineering & Technology, Vallabh Vidyanagar (Gujarat), IndiaGoogle Scholar
  11. [11] Cheng J, Kumar S (eds) (2015) A BIM-based framework for material logistics planningGoogle Scholar
  12. [12] NBS (2016) What is Building Information Modelling (BIM)? Accessed 18 Jun 2018
  13. [13] Tekla (2014) What is BIM? Accessed 18 Jun 2018
  14. [14] Fiallo M, Revelo V (eds) (2002) Applying the Last Planner Control System to a construction project: A case study in Quito, EcuadorGoogle Scholar
  15. [15] Jehle P, Seyffert S, Wagner S (2011) IntelliBau: Anwendbarkeit der RFID-Technologie im Bauwesen. Vieweg + Teubner Verlag, Wiesbaden, GermanyCrossRefGoogle Scholar
  16. [16] Helmus M, Meins-Becker A, Laußat L et al. (2009) RFID in der Baulogistik: Forschungsbericht zum Projekt „Integriertes Wertschöpfungsmodell mit RFID in der Bau- und Immobilienwirtschaft“. Vieweg + Teubner Verlag, Wiesbaden, GermanyGoogle Scholar
  17. [17] Costin A, Pradhananga N, Teizer J (eds) (2014) Passive RFID and BIM for Real-Time Visualization and Location Tracking, Atlanta, Georgia, USAGoogle Scholar
  18. [18] Hans Schulz, Steffen Rabe (2013) AutoBauLog – Autonome Steuerung in der BaustellenlogistikGoogle Scholar
  19. [19] Spengler AJ, Malkwitz A, Ehlers J et al. (2017) Supply Chain Tracking im BIM Modell. In: Proff H, Fojcik TM (eds) Innovative Produkte und Dienstleistungen in der Mobilität: Technische und betriebswirtschaftliche Aspekte. Springer Fachmedien Wiesbaden, Wiesbaden, Germany, pp 571–582CrossRefGoogle Scholar
  20. [20] Schober K-S, Hoff P, Sold K (2016) Digitization in the construction industry: Building Europe’s road to “Construction 4.0”. THINK ACTGoogle Scholar
  21. [21] Göpfert I (2012) Logistik der Zukunft – Logistics for the Future, 6th edn. Gabler Verlag, Wiesbaden, GermanyCrossRefGoogle Scholar
  22. [22] Precht P (2012) Nutzenprognose der RFID-Technologie: Ein Beitrag zur vorausschauenden Strukturierung, Beschreibung und Bewertung der Nutzenpotenziale von RFID-Anwendungen in der Logistik. Dissertation, Universität Erlangen-Nürnberg, Germany. Schriftenreihe Logistik und Informationstechnologien, vol 1. Fraunhofer, Stuttgart, GermanyGoogle Scholar
  23. [23] Alias C, Özgür Ç, Yang Q et al. (2016) A System of Multi-Sensor Fusion for Activity Monitoring of Industrial Trucks in Logistics Warehouses. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2015: Volume 1B: 35th Computers and Information in Engineering Conference. ASME, New York City (NY), USA, V01BT02A047, 10 pagesGoogle Scholar
  24. [24] Özgür Ç, Alias C, Noche B (2016) Comparing Sensor-Based and Camera-Based Approaches to Recognizing the Occupancy Status of the Load Handling Device of Forklift Trucks. Logistics Journal: 9 pages.
  25. [25] Borstell H, Kluth J, Jaeschke M et al. (2014) Pallet monitoring system based on a heterogeneous sensor network for transparent warehouse processes. In: 2014 Sensor Data Fusion: Trends, Solutions, Applications (SDF). IEEE, pp 1–6Google Scholar
  26. [26] Moya Rueda F, Grzeszick R, Fink G et al. (2018) Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors. Informatics 5(2): 26. Scholar
  27. [27] Alias C, Özgür Ç, Noche B (2016) Monitoring Production and Logistics Processes with the Help of Industrial Image Processing. In: 27th Annual POMS Conference 2016: Innovative Operations in an Information and Analytics Driven Economy, 10 pagesGoogle Scholar
  28. [28] Borstell H, Pathan S, Cao L et al. (2013) Vehicle positioning system based on passive planar image markers. In: International Conference on Indoor Positioning and Indoor Navigation. IEEE, pp 1–9Google Scholar
  29. [29] Timm C, Weichert F, Fiedler D et al. (2011) Decentralized Control of a Material Flow System Enabled by an Embedded Computer Vision System. In: 2011 IEEE International Conference on Communications Workshops (ICC). IEEE, pp 1–5Google Scholar
  30. [30] Weichert F, Fiedler D, Hegenberg J et al. (2010) Marker-based tracking in support of RFID controlled material flow systems. Logistics Research 2(1): 13–21. Scholar
  31. [31] Alias C, Jawale M, Goudz A et al. (2014) Applying Novel Future-Internet-Based Supply Chain Control Towers to the Transport and Logistics Domain. In: Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis 2014: Volume 3: Engineering Systems; Heat Transfer and Thermal Engineering; Materials and Tribology; Mechatronics; Robotics. ASME, New York City (NY), USA, V003T10A012, 9 pagesGoogle Scholar
  32. [32] Lewin M, Weber H, Fay A (2017) Optimization of Production-Oriented Logistics Processes Through Camera-Based Identification and Localization for Cyber-Physical Systems. In: Lödding H, Riedel R, Thoben K-D et al. (eds) Advances in production management systems: The path to intelligent, collaborative and sustainable manufacturing; IFIP WG 5.7 International Conference, APMS 2017, Hamburg, Germany, September 3-7, 2017; proceedings, vol 513. Springer, Cham, Switzerland, pp 168–176CrossRefGoogle Scholar
  33. [33] Borstell H (2018) A Short Survey Of Image Processing In Logistics. Preprint. UnpublishedGoogle Scholar
  34. [34] Azuma RT (1997) A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments 6(4): 355–385. Scholar
  35. [35] Dörner R, Broll W, Grimm P et al. (2013) Virtual und Augmented Reality (VR / AR). Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
  36. [36] Fründ J, Gausemeier J, Grafe M et al. (2004) Augmented Reality as a New User Interface for the Layout Planning of Manufacturing Systems. In: Ong SK, Nee AYC (eds) Virtual and Augmented Reality Applications in Manufacturing. Springer, London, United Kingdom, pp 169–182CrossRefGoogle Scholar
  37. [37] Glockner H, Jannek K, Mahn J et al. (2014) Augmented Reality in Logistics: Changing the way we see logistics. A DHL perspective, Troisdorf, GermanyGoogle Scholar
  38. [38] Reif R (2009) Entwicklung und Evaluierung eines Augmented Reality unterstützten Kommissioniersystems. Dissertation. Technische Universität München, Garching (near Munich), GermanyGoogle Scholar
  39. [39] Abel D, Schmitz M, Wenzel S (2011) Nutzung von Virtual Reality zur Personalqualifizierung in der Produktions- und Logistikplanung. Zeitschrift für wirtschaftlichen Fabrikbetrieb 106(10): 721–725CrossRefGoogle Scholar
  40. [40] Brill M (2009) Virtuelle Realität. Erstes Lehrbuch zur Virtuellen Realität. Springer, Berlin/ Heidelberg, GermanyGoogle Scholar
  41. [41] Gutiérrez MAA, Thalmann D, Vexo F (2008) Stepping into Virtual Reality. Springer, London, United KingdomCrossRefGoogle Scholar
  42. [42] Warnecke HJ, Bullinger H-J (1993) Virtual Reality: Anwendungen und Trends. IPA-IAO – Forschung und Praxis, vol 35. Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
  43. [43] Leitão P, Colombo AW, Karnouskos S (2016) Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry 81: 11–25. Scholar
  44. [44] Lee EA, Seshia SA (2012) Introduction to embedded systems: A cyber physical systems approach, 1st edn., LuluGoogle Scholar
  45. [45] Hribernik K, Warden T, Thoben K-D et al. (2010) An Internet of Things for Transport Logistics: An Approach to Connecting the Information and Material Flows in Autonomous Cooperating Logistics Processes. In: Hvolby H-H, Gundelund CH, Nielsen P et al. (eds) Proceedings of the 12th International Conference on Modern Information Technology & Innovation Processes of the Enterprises. Aalborg University, Denmark, Aalborg, Denmark, pp 54–67Google Scholar
  46. [46] Kohnhauser V, Schobesberger M, Siller M et al. (2017) Wege zu Smart Logistics: Integration von Informations- und Kommunikationstechnologien in KMU. Salzburger Managementstudien, Salzburg, AustriaGoogle Scholar
  47. [47] Ollesch J, Hesenius M, Gruhn V et al. (2018) Real-time Event Processing for Smart Logistics Networks. In: Proff H, Fojcik TM (eds) Mobilität und digitale Transformation: Technische und wirtschaftliche Aspekte. Springer Fachmedien Wiesbaden, Wiesbaden, Germany, pp 517–532CrossRefGoogle Scholar
  48. [48] Prasse C, Nettstraeter A, Hompel M ten (2014) How IoT will change the design and operation of logistics systems. In: 2014 International Conference on the Internet of Things (IOT). IEEE, pp 55–60Google Scholar
  49. [49] Seitz K-F, Nyhuis P (2015) Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control: A Learning Factory Concept for an Improved Production Planning and Control. Procedia CIRP 32: 92–97. Scholar
  50. [50] Etzion O, Niblett P (2011) Event Processing in Action. Manning, Greenwich (CT), USAGoogle Scholar
  51. [51] Luckham D (2008) The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. In: Bassiliades N, Governatori G, Paschke A (eds) Rule representation, interchange and reasoning on the web, vol 5321. Springer, Berlin, Germany, p 3CrossRefGoogle Scholar
  52. [52] Luckham D (2012) Event Processing for Business. John Wiley & Sons, Inc, Hoboken (NJ), USAGoogle Scholar
  53. [53] Erl T, Khattak W, Buhler P (2016) Big Data Fundamentals: Concepts, Drivers & Techniques, 1st edn. The Prentice Hall Service Technology Series from Thomas Erl. Prentice Hall ServiceTech Press, Boston (MA), USAGoogle Scholar
  54. [54] Provost F, Fawcett T (2013) Data science for business: What you need to know about data mining and data-analytic thinking, 1st edn. O’Reilly Media, Sebastopol (CA), USAGoogle Scholar
  55. [55] Alias C, Lederman Rawet V, Ratton Neto HX et al. (2016) Investigating into the Prevalence of Complex Event Processing and Predictive Analytics in the Transportation and Logistics Sector: Initial Findings from Scientific Literature. In: Proceedings of the 10th Mediterranean Conference on Information Systems 2016 (MCIS 2016). AIS Electronic Library (AISeL), (17 pages)Google Scholar
  56. [56] Hackius N, Petersen M (2017) Blockchain in logistics and supply chain: trick or treat? In: Kersten W, Blecker T, Ringle CM (eds) Proceedings of the Hamburg International Conference of Logistics (HICL) 2017: Volume: Digitalization in Supply Chain Management and Logistics, Hamburg, GermanyGoogle Scholar
  57. [57] Tian F (2016) An agri-food supply chain traceability system for China based on RFID & blockchain technology. In: 2016 13th International Conference on Service Systems and Service Management (ICSSSM). IEEE, pp 1–6Google Scholar
  58. [58] Schluter D, Spengler AJ, Malkwitz A (2018) Auswirkungen von Echtzeitkommunikation in der Baustellenlogistik. In: Proff H, Fojcik TM (eds) Mobilitat und digitale Transformation: Technische und betriebswirtschaftliche Aspekte. Springer Fachmedien Wiesbaden, Wiesbaden, Germany, pp 503–516CrossRefGoogle Scholar
  59. [59] Latiffi AA, Brahim J, Fathi MS (2016) Roles and Responsibilities of Construction Players in Projects Using Building Information Modeling (BIM). In: Bouras A, Eynard B, Foufou S et al. (eds) Product lifecycle management in the era of internet of things: PLM 2015. Springer, Cham, SwitzerlandCrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • A. J. Spengler
    • 1
    Email author
  • C. Alias
    • 1
  • E. G. C. Magallanes
    • 1
  • A. Malkwitz
    • 1
  1. 1.Universität Duisburg-EssenDuisburgDeutschland

Personalised recommendations