Advertisement

Validation of range estimation for electric vehicles based on recorded real-world driving data

  • Patrick Petersen
  • Jacob Langner
  • Stefan Otten
  • Eric Sax
  • Stefan Scheubner
  • Moritz Vaillant
  • Sebastian Fünfgeld
  • F. Porsche
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Electrification of vehicles is a growing trend in the automotive industry. Battery electric vehicles offer the potential to reduce greenhouse gas emissions, but short maximum range and missing charging infrastructure limits user acceptance. Range anxiety is a great challenge for battery electric vehicle drivers, therefore accurate methods for range estimation are required to satisfy customer needs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1. A. Mahmoudzadeh Andwari, A. Pesiridis, S. Rajoo, R. Martinez-Botas and V. Esfahanian, “A review of Battery Electric Vehicle technology and readiness levels”, Renewable and Sustainable Energy Reviews, vol. 78, no. May, pp. 414–430, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2017.03.138
  2. 2. Z. Needell, J. McNerney, M. Chang and J. Trancik, “Potential for widespread electrification of personal vehicle travel in the United States”, Nature Energy, vol. 1, p. 16112, Sep 2016.Google Scholar
  3. 3. A. Adepetu and S. Keshav, “The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study”, Transportation, vol. 44, no. 2, pp. 353–373, 2017.Google Scholar
  4. 4. J. Neubauer and E. Wood, “The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility”, Journal of Power Sources, vol. 257, pp. 12–20, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2014.01.075
  5. 5. T. Franke, “Nachhaltige Mobilität mit begrenzten Ressourcen: Erleben und Verhalten im Umgang mit der Reichweite von Elektrofahrzeugen”, 2013.Google Scholar
  6. 6. T. Franke, M. Günther, M. Trantow and J. F. Krems, “Does this range suit me? Range satisfaction of battery electric vehicle users” Applied Ergonomics, vol. 65, pp. 191–199, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.apergo.2017.06.013
  7. 7. L. Rodgers, D. Frey and E. Wilhelm, “Estimating an Electric Vehicle’s “Distance to Empty” Using Both Past and Future Route Information”, 2013.Google Scholar
  8. 8. J. Felipe, J. C. Amarillo, J. E. Naranjo, F. Serradilla and A. Diaz, “Energy Consumption Estimation in Electric Vehicles Considering Driving Style”, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2015-Octob, pp. 101–106, 2015.Google Scholar
  9. 9. S. Grubwinkler, M. Kugler, and M. Lienkamp, “Vehicle independent prediction of the variation of propulsion energy consumption for EVs”, pp. 1–4, 2013.Google Scholar
  10. 10. M. A. Masrur, D. Sutanto, V. R. Tannahill, and K. M. Muttaqi, “Future vision for reduction of range anxiety by using an improved state of charge estimation algorithm for electric vehicle batteries implemented with low-cost microcontrollers” IET Electrical Systems in Transportation, vol. 5, no. 1, pp. 24–32, 2015. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-est.2014.0013
  11. 11. S. Sautermeister, F. Ott, M. Vaillant and F. Gauterin, “Reducing Range Estimation Uncertainty with a Hybrid Powertrain Model and Online Parameter Estimation”, 2017 IEEE 20th International Conference on Intelligent Transportation Systems, ITSC, pp. 910–915, 2017.Google Scholar
  12. 12. J. A. Oliva, C. Weihrauch and T. Bertram, “Model-based remaining driving range prediction in electric vehicles by using particle filtering and markov chains”, World Electric Vehicle Journal, vol. 6, no. 1, pp. 204–213, 2013.CrossRefGoogle Scholar
  13. 13. E. Sax, Automatisiertes Testen Eingebetteter Systeme in der Automobilindustrie. München, Hanser, Carl, 2008.Google Scholar
  14. 14. “Automotive SPICE Process Assessment / Reference Model, 3rd ed., VDA QMC Working Group 13 and Automotive SIG, Berlin, Germany, 7 2015” [Online]. Available: http://www.automotivespice.com/
  15. 15. H. Shokry and M. Hinchey, “Model-based verification of embedded software”, Computer, vol. 42, no. no. 4, pp. 53–59, 2009.CrossRefGoogle Scholar
  16. 16. E. Bringmann and A. Krämer, “Model-Based Testing of Automotive Systems”, 2008 International Conference on Software Testing, Verification, and Validation, pp. 485–493, 2008. [Online]. Available: http://ieeexplore.ieee.org/document/4539577/
  17. 17. J. Mazzega, F. Köster, K. Lemmer and T. Form, “Testing of Highly Automated Driving Functions” ATZ worldwide, vol. 118, no. 10, pp. 44–48, 2016. [Online]. Available:  https://doi.org/10.1007/s38311-016-0101-xCrossRefGoogle Scholar
  18. 18. B. Boehm, “Software Engineering”, IEEE Transactions on Computers, vol. C-25, no. 12, pp. 1226–1241, 1976. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1674590
  19. 19. T. Helmer, L. Wang, K. Kompass, and R. Kates, “Safety Performance Assessment of Assisted and Automated Driving by Virtual Experiments: Stochastic Microscopic Traffic Simulation as Knowledge Synthesis”, IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2015-Octob, pp. 2019–2023, 2015.Google Scholar
  20. 20. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding” 2016. [Online]. Available: http://arxiv.org/abs/1604.01685
  21. 21. J. Bach, J. Langner, S. Otten, M. Holzapfel and E. Sax, “Data-driven development, a complementing approach for automotive systems engineering”, 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 - Proceedings, 2017.Google Scholar
  22. 22. J. Langner, J. Bach, S. Otten, E. Sax, C. Esselborn, M. Holzäpfel and M. Eckert, “Framework for using real driving data in automotive feature development and validation”, 2017.Google Scholar
  23. 23. J. Bach, K.-l. Bauer, M. Holzäpfel, M. Hillenbrand and E. Sax, “Control based driving assistant functions’ test using recorded in field data”, Proc. 7. Tagung Fahrerassistenzsysteme, 2015.Google Scholar
  24. 24. J. Bach, J. Langner, S. Otten, E. Sax and M. Holzäpfel, “Test scenario selection for system-level verification and validation of geolocation-dependent automotive control systems”, 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), no. July, pp. 203–210, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/8279890/
  25. 25. C. C. Rolim, G. N. Gonc¸alves, T. L. Farias and O. Rodrigues, “Impacts of Electric Vehicle Adoption on Driver Behavior and Environmental Performance”, Procedia - Social and Behavioral Sciences, vol. 54, pp. 706–715, 2012. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1877042812042504
  26. 26. V. R. Tannahill, K. M. Muttaqi and D. Sutanto, “Driver alerting system using range estimation of electric vehicles in real time under dynamically varying environmental conditions”, IET Electrical Systems in Transportation, vol. 6, no. 2, pp. 107–116, 2016. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-est.2014.0067
  27. 27. Z. Yi and P. H. Bauer, “Adaptive Multiresolution Energy Consumption Prediction for Electric Vehicles”, IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10 515–10 525, 2017.CrossRefGoogle Scholar
  28. 28. A. Enthaler and F. Gauterin, “Method for reducing uncertainties of predictive range estimation algorithms in electric vehicles”, 2015 IEEE 82nd Vehicular Technology Conference, VTC Fall 2015 - Proceedings, 2016.Google Scholar
  29. 29. S. Sautermeister, M. Falk, B. Baker, F. Gauterin and M. Vaillant, “Influence of Measurement and Prediction Uncertainties on Range Estimation for Electric Vehicles”, IEEE Transactions on Intelligent Transportation Systems, pp. 1–12, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/8101542/

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Patrick Petersen
    • 1
  • Jacob Langner
    • 1
  • Stefan Otten
    • 1
  • Eric Sax
    • 1
  • Stefan Scheubner
    • 2
  • Moritz Vaillant
    • 2
  • Sebastian Fünfgeld
    • 2
  • F. Porsche
    • 2
  1. 1.FZI Research Center for Information TechnologyKarlsruheDeutschland
  2. 2.Porsche AGWeissachDeutschland

Personalised recommendations