Advertisement

A high efficiency lean-burn mono‑fuel heavy‑duty natural‑gas engine for achieving Euro VI emissions legislation and beyond – part 2

  • André BarrosoEmail author
  • Andrew Auld
  • James Manuelyan
  • Matthew Keenan
  • Paolo Ferrero Giacominetto
  • Rhys Pickett
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Engine development for road haulage transportation is facing several major challenges relating to the reduced minimum payload for in-service emissions conformity and future limitations on CO2 emissions that will require improved fuel economy. Currently in the European Union (EU), Diesel engines dominate the market share of Heavy-Duty Vehicles (HDVs), with this category of vehicles accounting for one quarter of the total CO2 emissions emitted in the transportation sector. To address the significant CO2 production within the sector, the European Commission has recently announced the intention to implement a legislative proposal to regulate CO2 emissions from new HDVs [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    European Automobile Manufacturers’ Association (ACEA), “Future CO2 standards for heavy-duty vehicles”, ACEA Position Paper April 2018Google Scholar
  2. [2]
    NGVA Europe, Natural & bio Gas Vehicle Association Europe, Statistical Report 2017, 2017-06-NGVSTAT-PP-V1Google Scholar
  3. [3]
    Hempe, C., Kubach, H., Spicher, U., Rixecker, G., Bohne, S., “Investigations of Ignition Processes Using High Frequency Ignition”, SAE Technical Paper 2013-01-1633,  https://doi.org/10.4271/2013-01-1633
  4. [4]
    Cimarello, A., Grimaldi, C., Mariani, F., Battistoni, M. et al., “Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine”, SAE Technical Paper 2017-01-0673, 2017,  https://doi.org/10.4271/2017-01-0673
  5. [5]
    Schenk A., Rixecker G., Brichzin V., Becker M. (2014) Potential of corona ignition on gas engines using EGR and lean combustion. In: Bargende M., Reuss HC., Wiedemann J. (eds) 14. Internationales Stuttgarter Symposium. ProceedingsGoogle Scholar
  6. [6]
    Pineda, D., Wolk, B., Chen, J., and Dibble, R., “Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions,” SAE Int. J. Engines 9(3): 2016,  https://doi.org/10.4271/2016-01-9045.CrossRefGoogle Scholar
  7. [7]
    M. Schenk, T. Wolf, M. Schröter, F. Zellinger, B. Klaus, D. Pfeiffer, H. Fischer, “Corona-Ignition vs. Spark Ignition: A Fundamental Comparison for varying thermodynamic conditions of modern turbocharged Gasoline Engines”, SIA Powertrain Conference, Versailles (2015)Google Scholar
  8. [8]
    F. A. Ayala, J. B. Heywood, “Lean SI Engines: The Role of Combustion Variability in Defining Lean Limits”, SAE Technical Paper Series 2007-24-0030Google Scholar
  9. [9]
    James Girard, Giovanni Cavataio, Rachel Snow and Christine Lambert, “Combined Fe-Cu SCR Systems with Optimized Ammonia to NOx Ratio for Diesel NOx Control”, SAE Int. J. Fuels Lubr., Volume 1, Issue 1, SAE Technical Paper 2008-01-1185CrossRefGoogle Scholar
  10. [10]
    James Girard, Rachel Snow, Giovanni Cavataio and Christine Lambert, “The Influence of Ammonia to NOx Ratio on SCR Performance”, SAE Technical Paper 2007-01-1581Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • André Barroso
    • 1
    Email author
  • Andrew Auld
    • 1
  • James Manuelyan
    • 1
  • Matthew Keenan
    • 1
  • Paolo Ferrero Giacominetto
    • 1
  • Rhys Pickett
    • 1
  1. 1.Ricardo UK LtdShoreham-by-SeaGroßbritannien

Personalised recommendations