Advertisement

A Mixed Reality Simulation for Robotic Systems

  • Martin LeipertEmail author
  • Jenny Sadowski
  • Michèle Kießling
  • Emeric Kwemou Ngandeu
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

In interventional angiography, kinematic simulation of robotic system prototypes in early development phases facilitates the detection of design errors. In this work, a game engine visualization with output is developed for such a robotic simulation. The goal of this is a better perception of the prototype by more realistic visualization. The achieved realism is evaluated in a user study. Additionally, the inclusion of real rooms’ walls into the simulation’s collision model is tested and evaluated, to verify smartglasses as a tool for interactive room planning. The walls are reconstructed from point clouds using a mean shift segmentation and RANSAC. Afterwards, the obtained wall estimates are ordered using a simple neighborhood graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Cowan B, Kapralos B. A survey of frameworks and game engines for serious game development. Proc IEEE Adv Learn Technol. 2014; p. 662–664.Google Scholar
  2. 2.
    Andaluz H, Chicaiza F, Gallardo C, et al. Unity3D-MatLab simulator in real time for robotics applications. Comput Graph. 2016; p. 246–263.Google Scholar
  3. 3.
    Aschenbrenner D, Maltry N, Kimmel J, et al. ARTab: using virtual and augmented reality methods for an improved situation awareness for telemaintenance. IFAC Pap Online. 2016;49(30):204–209.Google Scholar
  4. 4.
    Du H, Henry P, Ren X, et al. Interactive 3D modeling of indoor environments with a consumer depth camera. Proc Int Conf Ubiquitous Comput. 2011; p. 75–84.Google Scholar
  5. 5.
    Oesau S, Lafarge F, Alliez P. Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. J Photogramm Remote Sens. 2014;90:68–82.CrossRefGoogle Scholar
  6. 6.
    Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–619.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Martin Leipert
    • 1
    • 2
    Email author
  • Jenny Sadowski
    • 2
  • Michèle Kießling
    • 2
  • Emeric Kwemou Ngandeu
    • 2
  • Andreas Maier
    • 1
  1. 1.Chair of Pattern RecognitionFAU Erlangen-NürnbergNürnbergDeutschland
  2. 2.Siemens HealthineersErlangenDeutschland

Personalised recommendations