Bildverarbeitung für die Medizin 2019 pp 200-205 | Cite as
Machbarkeitsstudie zur CNN-basierten Identifikation und TICI-Klassifizierung zerebraler ischämischer Infarkte in DSA-Daten
Zusammenfassung
Ziel der vorliegenden Machbarkeitsstudie ist es, zu prüfen, ob eine bildbasierte TICI-Klassifikation von ischämischen Infarkten mittels aktueller Machine Learning-Methoden automatisiert werden kann. Der TICI-Score (Thrombolysis in Cerebral Infarction) beschreibt den lokalen Befund am Infarktort und nachgeschaltete Hirndurchblutung nach endovaskulärer Behandlung. Die zugrunde liegenden Bilddaten sind (2D+t)-Bildserien aus zwei orthogonalen Ansichten (lateral und anterior-posterior), die mittels digitaler Subtraktionsangiographie (DSA) aufgenommen wurden. Basierend auf 698 Bildsequenzen wurde untersucht, inwieweit mittels CNN (Convolutional Neural Network) anhand von entweder aus den Zeitserien abgeleiteten Minimum Intensity Projection-Daten oder unter expliziter Berücksichtigung der Zeitserieninformation eine korrekte Klassifikation erfolgt. Im Zuge dessen wurden im Hinblick auf die zu erwartende Komplexität verschiedene Konfigurationen/Kombinationen von Verschlussort und TICI-Score definiert und analysiert. Die Ergebnisse zeigen, dass es möglich ist, TICI-Score und Verschlussort von ischämischen Infarkten zumindest bei stark unterschiedlichen TICI-Scores verlässlich automatisiert zu bestimmen; die Machbarkeit wird belegt.
Preview
Unable to display preview. Download preview PDF.
Literatur
- 1.Higashida RT, Furlan AJ, et al. Trial design and reporting standards for intraarterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34:e109–37.CrossRefGoogle Scholar
- 2.Drewer-Gutland F, Kemmling A, Ligges S, et al. CTP-based tissue outcome: promising tool to prove the beneficial effect of mechanical recanalization in acute ischemic stroke. RoFo. 2015;187:459–66.CrossRefGoogle Scholar
- 3.Asadi H, Dowling R, Yan B, et al. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE. 2014;9:e88225.CrossRefGoogle Scholar
- 4.McKinley R, Häni L, Gralla J, et al. Fully automated stroke tissue estimation using random forest classifiers (FASTER). J Cereb Blood Flow Metab. 2016;37:2728–41.CrossRefGoogle Scholar
- 5.He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. Proc CVPR. 2016; p. 770–778.Google Scholar
- 6.Hinton GE, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors. CoRR. 2012;abs/1207.0580. Available from: http://arxiv.org/abs/1207.0580.
- 7.Fugate JE, Klunder AM, Kallmes DF. What is meant by “TICI”? AJNR Am J Neuroradiol. 2013;34:1792–7.CrossRefGoogle Scholar