Joint Multiresolution and Background Detection Reconstruction for Magnetic Particle Imaging

  • Christine DroigkEmail author
  • Marco Maass
  • Corbinian Englisch
  • Alfred Mertins
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


Magnetic particle imaging is a tracer-based medical imaging technology that is quite promising for the task of imaging vessel structures or blood flows. From this possible application it can be deduced that significant areas of the image domain are related to background, because the tracer material is only inside the vessels and not in the surrounding tissue. From this fact alone it seems promising to detect the background of the image in early stages of the reconstruction process. This paper proposes a multiresolution and segmentation based reconstruction, where the background is detected on a coarse level of the reconstruction with only few degrees of freedom by a Gaussian-mixture model and transferred to finer reconstruction levels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214-1217.CrossRefGoogle Scholar
  2. 2.
    Knopp T, Buzug TM. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Berlin/Heidelberg: Springer; 2012.CrossRefGoogle Scholar
  3. 3.
    Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging. 2009;9(4):4.Google Scholar
  4. 4.
    Lampe J, Bassoy C, Rahmer J, et al. Fast reconstruction in magnetic particle imaging. Phys Med Biol. 2012;57(4):1113-1134.CrossRefGoogle Scholar
  5. 5.
    Knopp T, Weber A. Local system matrix compression for effcient reconstruction in magnetic particle imaging. Adv Math Phys. 2015;2015(Article ID 472818):1-7.CrossRefGoogle Scholar
  6. 6.
    Maass M, Mink C, Mertins A. Joint multiresolution magnetic particle imaging and system matrix compression. Int J Magn Part Imaging. 2018;4(2).Google Scholar
  7. 7.
    Siebert H, Maass M, Ahlborg M, et al. MMSE MPI reconstruction using background identification. Proc Int Workshop Magn Part Imaging. 2016; p. 58.Google Scholar
  8. 8.
    Bathke C, Kluth T, Brandt C, et al. Improved image reconstruction in magnetic particle imaging using structural a priori information. Int J Magn Part Imaging. 2017;3(1).Google Scholar
  9. 9.
    Layer T, Blaickner M, Knäusl B, et al. PET image segmentation using a gaussian mixture model and markov random fields. EJNMMI Phys. 2015;2(1).Google Scholar
  10. 10.
    Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009;2(1):183{202.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600{612.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Christine Droigk
    • 1
    Email author
  • Marco Maass
    • 1
  • Corbinian Englisch
    • 1
  • Alfred Mertins
    • 1
  1. 1.Institute for Signal ProcessingUniversity of LübeckLübeckDeutschland

Personalised recommendations