Advertisement

Automatic Detection of Blood Vessels in Optical Coherence Tomography Scans

  • Julia HofmannEmail author
  • Melanie Böge
  • Szymon Gladysz
  • Boris Jutzi
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The aim of this research is to develop a new automated blood vessel (BV) detection algorithm for optical coherence tomography (OCT) scans and corresponding fundus images. The algorithm provides a robust method to detect BV shadows (BVSs) using Radon transformation and other supporting image processing methods. The position of the BVSs is determined in OCT scans and the BV thickness is measured in the fundus images. Additionally, the correlation between BVS thickness and retinal nerve fiber layer (RNFL) thickness is determined. This correlation is of great interest since glaucoma, for example, can be identified by a loss of RNFL thickness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Wehbe H, Ruggeri M, Jiao S, et al. Automatic retinal blood vessel parameters calculation in spectral domain optical coherence tomography. Procs SPIE. 2007;6429:6429–1–7.Google Scholar
  2. 2.
    Niemeijer M, Garvin MK, van B Ginneken, et al. Vessel segmentation in 3D spectral OCT scans of the retina. Procs SPIE. 2008;6914:6914–1–8.Google Scholar
  3. 3.
    Annunziata R, Garzelli A, Ballerini L, et al. Leveraging multiscale hessian-based enhancement with a novel exudate inpainting technique for retinal vessel segmentation. IEEE J Biomed Health Inform. 2016;20(4):1129–38.CrossRefGoogle Scholar
  4. 4.
    Lee KM. Segmentations of the Intraretinal Surfaces, Optic Disc and Retinal Blood Vessels in 3D-OCT Scans. Iowa: Univ Iowa; 2009.Google Scholar
  5. 5.
    Pilch M, Wenner Y, Strohmayr E, et al. Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans. Biomed Opt Expr. 2012;3(7):1478–91.CrossRefGoogle Scholar
  6. 6.
    Li Q, Fengi B, Xie L, et al. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging. 2016;35(1):109–18.CrossRefGoogle Scholar
  7. 7.
    Mayer MA, Hornegger J, Mardin C, et al. Retinal nerve fiber layer segmentation on FD-OCT scans of normal subjects and glaucoma patients. Biomed Opt Expr. 2010;1(5):1358–83.CrossRefGoogle Scholar
  8. 8.
    Radon J. Über die Bestimmung von Funktionen durch Ihre Integralwerte Längs Geweisser Mannigfaltigkeiten. Berichte Sächsische Acad Wissenschaft Math Phys, Klass. 1917;69:262.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Julia Hofmann
    • 1
    Email author
  • Melanie Böge
    • 1
  • Szymon Gladysz
    • 1
  • Boris Jutzi
    • 2
  1. 1.Fraunhofer Institute of OptronicsSystem Technologies and Image Exploitation (IOSB)EttlingenDeutschland
  2. 2.Institute of Photogrammetry and Remote Sensing (IPF)KIT KarlsruheKarlsruheDeutschland

Personalised recommendations