Advertisement

Automatic Detection and Segmentation of the Acute Vessel Thrombus in Cerebral CT

  • Christian LucasEmail author
  • Jonas J. Schöttler
  • André Kemmling
  • Linda F. Aulmann
  • Mattias P. Heinrich
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Intervention time plays a very important role for stroke outcome and affects different therapy paths. Automatic detection of an ischemic condition during emergency imaging could draw the attention of a radiologist directly to the thrombotic clot. Considering an appropriate early treatment, the immediate automatic detection of a clot could lead to a better patient outcome by reducing time-to-treatment. We present a two-stage neural network to automatically segment and classify clots in the MCA+ICA region for a fast pre-selection of positive cases to support patient triage and treatment planning. Our automatic method achieves an area under the receiver operating curve (AUROC) of 0:99 for the correct positive/negative classification on unseen test data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Mackay J, Mensah G, eds. The atlas of heart disease and stroke. WHO. 2004; p. 18–19.Google Scholar
  2. 2.
    Kemmling A, Flottmann F, Forkert ND, et al. Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J Cereb Blood Flow Metab. 2015;35(9):1397–1405.CrossRefGoogle Scholar
  3. 3.
    Winzeck S, Hakim A, McKinley R, et al. ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front Neurol. 2018;9:679.Google Scholar
  4. 4.
    Inoue T, Nakaura T, Yoshida M, et al. Brain computed tomography using iterative reconstruction to diagnose acute middle cerebral artery stroke: usefulness in combination of narrow window setting and thin slice reconstruction. Neuroradiol. 2018;60(4):373–379.CrossRefGoogle Scholar
  5. 5.
    Takahashi N, Lee Y, Tsai DY, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol Phys Technol. 2014;7(1):79–88.CrossRefGoogle Scholar
  6. 6.
    Lisowska A, O’Neil A, Dilys V, et al. Context-aware convolutional neural networks for stroke sign detection in non-contrast CT scans. Med Image Underst Anal. 2017; p. 494–505.Google Scholar
  7. 7.
    Setio AAA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging. 2016;35(5):1160–1169.CrossRefGoogle Scholar
  8. 8.
    Sakamoto M, Nakano H, Zhao K, et al. Multi-stage neural networks with singlesided classifiers for false positive reduction and its evaluation using lung X-ray CT images. Proc ICIAP. 2017; p. 370–379.Google Scholar
  9. 9.
    Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015; p. 234–241.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Christian Lucas
    • 1
    Email author
  • Jonas J. Schöttler
    • 1
  • André Kemmling
    • 2
  • Linda F. Aulmann
    • 3
  • Mattias P. Heinrich
    • 1
  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckDeutschland
  2. 2.Department of Clinical RadiologyUniversity Hospital MünsterMünsterDeutschland
  3. 3.Institute of NeuroradiologyUniversity Medical Center Schleswig-HolsteinLübeckDeutschland

Personalised recommendations