Segmentation of Vertebral Metastases in MRI Using an U-Net like Convolutional Neural Network

  • Georg HilleEmail author
  • Max Dünnwald
  • Mathias Becker
  • Johannes Steffen
  • Sylvia Saalfeld
  • Klaus Tönnies
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


This study’s objective was to segment vertebral metastases in diagnostic MR images by using a deep learning-based approach. Segmentation of such lesions can present a pivotal step towards enhanced therapy planning and implementation of minimally-invasive interventions like radiofrequency ablations. For this purpose, we used a U-Net-like architecture trained with 38 patient-cases. Our proposed method has been evaluated by comparison to expertly annotated lesion segmentations via Dice coeffcients, sensitivity and specificity rates. While the experiments with T1-weighted MRI images yielded promising results (average Dice score of 73:84 %), T2-weighted images were in average rather insufficient (53:02 %). To our best knowledge, our proposed study is the first to tackle this particular issue, which limits direct comparability with related works. In respect to similar deep learning-based lesion segmentations, e.g. in liver MR images or spinal CT images, our experiments with T1-weighted MR images show similar or in some respects superior segmentation quality.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrington K. Metastatic disease of the spine. JBJS. 1986;68:1110-1115.CrossRefGoogle Scholar
  2. 2.
    Dupuy DE, Liu D, Hartfeil D, et al. Percutaneous radiofrequency ablation of painful osseous metastases. Cancer. 2010;116:989-997.CrossRefGoogle Scholar
  3. 3.
    Kröger T, Pätz T, Altrogge I, et al. Fast estimation of the vascular cooling in RFA based on numerical simulation. Open Biomed Eng J. 2010;4.CrossRefGoogle Scholar
  4. 4.
    Liu J, Li M, Wang J, et al. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19(6):578-595.Google Scholar
  5. 5.
    Christ PF, Ettlinger F, Grün F, et al. Automatic liver and tumor segmentation of ct and mri volumes using cascaded fully convolutional neural networks. arXiv:170205970. 2017;.
  6. 6.
    Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18-31.CrossRefGoogle Scholar
  7. 7.
    Kamnitsas K, Ledig C, Newcombe VF, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61-78.CrossRefGoogle Scholar
  8. 8.
    Chmelik J, Jakubicek R, Walek P, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal. 2018;49:76-88.CrossRefGoogle Scholar
  9. 9.
    Ççicek Ӧ, Abdulkadir A, Lienkamp SS, et al.; Springer. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Proc MICCAI. 2016; p. 424-432.Google Scholar
  10. 10.
    Isensee F, Kickingereder P, Bonekamp D, et al. Brain tumor segmentation using large receptive field deep convolutional neural networks. Proc BVM. 2017; p. 86-91.Google Scholar
  11. 11.
    Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. arXiv:170907330. 2017;.

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Georg Hille
    • 1
    Email author
  • Max Dünnwald
    • 1
  • Mathias Becker
    • 2
  • Johannes Steffen
    • 1
  • Sylvia Saalfeld
    • 1
  • Klaus Tönnies
    • 1
  1. 1.Department of and GraphicsUniversity of MagdeburgMagdeburgDeutschland
  2. 2.Department of NeuroradiologyUniversity Hospital of MagdeburgMagdeburgDeutschland

Personalised recommendations