Advertisement

Modellierungsansatz zur Abbildung gesamtmotorischer Reibungsverluste

  • Oleg KreckerEmail author
  • Bernhard Huber
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Gesetzliche Rahmenbedingungen hinsichtlich der zulässigen CO2-Emissionen sowie Kundenanforderungen bezüglich des Kraftstoffverbrauchs erfordern eine kontinuierliche Wirkungsgradsteigerung moderner Ottomotoren. Dabei stellt die Reduzierung der innermotorischen mechanischen Verluste (Reibung) ein adäquates Mittel dar, um diese Zielvorgaben zu erreichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1].
    Amtsblatt der Europäischen Union, Verordnung (EG) Nr. 443/2009 des Europäischen Parlaments und des Rates vom 23. April 2009. Nr. 433/2009, 2009.Google Scholar
  2. [2].
    United Nations – Economic and Social Council, Proposal for a new global technical regulation on the Worldwide harmonized Light vehicles Test Procedure (WLTP). ECE/Trans/WP.29/2014/27, 2014.Google Scholar
  3. [3].
    V. W. Wong and S. C. Tung, “Overview of automotive engine friction and reduction trends – Effects of surface, material, and lubricant-additive technologies,” Friction, vol. 4, no. 1, pp. 1–28, 2016.Google Scholar
  4. [4].
    C. Landerl, M. Rülicke, D. Spanring, and S. Schmuck-Soldan, “Die Ottomotorenfamilie des Next-Generation-Baukastens von BMW,” Motortechnische Zeitschrift, vol. 79, no. 3, pp. 40–47, Mar. 2018.Google Scholar
  5. [5].
    A. Merkle, B. Huber, and T. Spitznagel, “Symmetrische Formhonung in den neuen BMW 3- und 4-Zylinder- Ottomotoren,” in 6. ATZ-Fachtagung Tribologie – Reibungsminimierung im Antriebsstrang, 2017.Google Scholar
  6. [6].
    M. Werner, S. Graf, A. Merkle, and G. Wachtmeister, “Direkte Messung der Kolbengruppenreibung,” Motortechnische Zeitschrift, vol. 75, no. 1, pp. 72–79, Jan. 2014.Google Scholar
  7. [7].
    A. A. Merkle, “Maßnahmen zur Reduzierung der CO 2-Emissionen von Verbrennungsmotoren durch Reibungsoptimierung des tribologischen Systems Kolbengruppe,” Dissertation, Technische Universität München, 2015.Google Scholar
  8. [8].
    D. Sandoval and J. B. Heywood, “An Improved Friction Model for Spark- Ignition Engines,” SAE Technical Paper, no. 2003-1–725, 2003.Google Scholar
  9. [9].
    K. J. Patton, R. C. Nitschke, and J. B. Heywood, “Development and Evaluation of a Friction Model for Spark-Ignition Engines,” SAE Technical Paper, no. 890836, Feb. 1989.Google Scholar
  10. [10].
    G. D. Fischer, “Expertenmodell zur Berechnung der Reibungsverluste von Ottomotoren,” Dissertation, Technische Universität Darmstadt, 1999.Google Scholar
  11. [11].
    D. Dowson, C. M. Taylor, and L. Yang, “Friction Modelling for Internal Combustion Engines,” in Tribology Series, vol. 31, D. Dowson, Ed. Elsevier, 1996, pp. 301–318.Google Scholar
  12. [12].
    Q. Zhou, I. Shilling, and S. H. Richardson, “Prediction of total engine friction power loss from detailed component models,” in Tribology Series, vol. 41, D. Dowson, Ed. Elsevier, 2003, pp. 761–766.Google Scholar
  13. [13].
    J. F. Booker, “Dynamically Loaded Journal Bearings: Mobility Method of Solution,” Journal of Basic Engineering, vol. 87, p. 537, 1965.Google Scholar
  14. [14].
    C. M. Taylor, “Engine Bearings: Background and Lubrication Analysis,” in Tribology Series, vol. 26, C. M. Taylor, Ed. Elsevier, 1993, pp. 89–112.Google Scholar
  15. [15].
    J. A. Greenwood and J. H. Tripp, “The Contact of Two Nominally Flat Rough Surfaces,” Proceedings of the Institution of Mechanical Engineers, vol. 185, no. 1, pp. 625–633, Jun. 1970.Google Scholar
  16. [16].
    Schaeffler Gruppe Industrie and INA FAG, “Technische Grundlagen.” Technische Dokumentation, 2006.Google Scholar
  17. [17].
    GT-Suite, “Mechanics Theory Manual.” Gamma Technologies LLC, 2018.Google Scholar
  18. [18].
    GT-Suite, “Valvetrain Application Manual.” Gamma Technologies LLC, 2018.Google Scholar
  19. [19].
    J. I. McCool, “Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces,” Journal of Tribology, vol. 109, no. 2, p. 264, Apr. 1987.Google Scholar
  20. [20].
    E. Tomanik, H. Chacon, and G. Teixeira, “A simple numerical procedure to calculate the input data of Greenwood-Williamson model of asperity contact for actual engineering surfaces,” Tribology Series, vol. 41, pp. 205–215, Jan. 2003.Google Scholar
  21. [21].
    F. A. Martin, “Oil flow in plain steadily loaded journal bearings: realistic predictions using rapid techniques,” Journal of Engineering Tribology (Part J), vol. 212, pp. 413–425, 1997.Google Scholar
  22. [22].
    N. Patir and H. S. Cheng, “Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces,” Journal of Lubrication Technology, vol. 101, no. 2, p. 220, Apr. 1979.Google Scholar
  23. [23].
    D. Bartel, Simulation von Tribosystemen. Wiesbaden: Vieweg+Teubner, 2010.Google Scholar
  24. [24].
    B. J. Hamrock and D. Dowson, “Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation,” Journal of Lubrication Technology, vol. 98, no. 2, p. 223, Apr. 1976.Google Scholar
  25. [25].
    H. Moes, “Optimum similarity analysis with applications to elastohydrodynamic lubrication,” Wear, vol. 159, no. 1, pp. 57–66, 1992.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.BMW GroupMünchenDeutschland

Personalised recommendations