Skip to main content

Zusammenfassung

Das Straßenbeleuchtungsnetzwerk wird derzeit nur zur Beleuchtung verwendet. Zukünftige Strombedarfe im Niederspannungsnetz (LV), zum Beispiel E-Mobilität, legen es nah, das bestehende Netzwerk in einer verwalteten Weise für mehrere Anwendungen zu nutzen. Diese Verwaltung beruht jedoch auf detaillierten Kenntnissen der Netzwerktopologie, die aufgrund nicht verfolgter Änderungen nicht immer bekannt sind. Intelligente Lichtmasten, die Lasten messen und verwalten können, ermöglichen die Topologieerkennung. In dieser Arbeit wird eine automatische Methode zur Identifizierung von LV-Netzwerktopologien vorgestellt. Die Topologie wird durch Verbinden von Testlasten erkannt, während die gemessenen Spannungswerte über die Jenks Natural Breaks-Methode gruppiert werden und die Topologie mit dem Algorithmus rekonstruiert wird. Das Verfahren wurde mit einem PowerFactory-Modell evaluiert und erwies sich als eine robuste Methode. Die Methode stellt die Topologie dar und eignet sich als Input für Energiemanagementsysteme, sodass Lichtnetzwerke eine Plattform für Smart-City-Anwendungen werden können.

Abstract

The street lighting network is currently used only for illumination. Future electricity demands at the low voltage (LV) network, for example, e-mobility, suggests using the existing network in a managed way for multiple applications. This management relies on detailed knowledge of the network topology, which is not always known due to untracked changes. Intelligent lighting poles capable of measuring and managing loads allow for topology identification. In this work, an automatic method for identification of LV networks topology is presented. The topology is detected by connecting test loads, while the measured voltage values are clustered via Jenks Natural Breaks method, and the topology is reconstructed with the algorithm. The procedure is evaluated with a PowerFactory model and showed to be a robust method. The method proves to identify the topology and suitable as input for energy management systems, enabling lighting networks to become a platform for smart city applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pescia D, Graichen P, Litz P, Jacobs D (2015) Understanding the Energiewende. FAQ on the ongoing transition of the German power system. Agora Energiewende, Berlin. Publication number: 080/06-H-2015/EN

    Google Scholar 

  2. An electricity grid for the energy transition (2018, April 24). Retrieved from https://www.bmwi.de/Redaktion/EN/Dossier/grids-grid-expansion.html

  3. Hayn M, Bertsch V, Fichtner W (2014) Electricity load profiles in Europe: the importance of household segmentation. Energy Res Soc Sci 3:30–45. ISSN 2214-6296

    Article  Google Scholar 

  4. Rajakaruna S, Shahnia F, Ghosh A (2014) Plug in electric vehicles in smart grids: charging strategies. Springer, Heidelberg. Print

    Google Scholar 

  5. Liao Y, Weng Y, Wu M, Rajagopal R (2015) Distribution grid topology reconstruction: an information theoretic approach. In: 2015 North American Power Symposium (NAPS), Charlotte, pp 1–6

    Google Scholar 

  6. Arya V, Jayram T, Pal S, Kalyanaraman S (2013) Inferring connectivity model from meter measurements in distribution networks. In: 4th international conference on future energy systems, Berkeley, 21–24 May 2013

    Google Scholar 

  7. Pezeshki H, Wolfs H (2012) Consumer phase identification in a three phase unbalanced lv distribution network. In: IEEE PES innovative smart grid technologies, Europe, Berlin University of Technology (TU Berlin), Berlin, 14–17 October 2012

    Google Scholar 

  8. Cavraro G (2015) Modeling, control and identification of a smart grid. Ph.D. thesis, University of Padova

    Google Scholar 

  9. Wiel S, Bent R, Casleton E, Lawrence E (2014) Identification of topology changes in power grids using phasor measurements. Appl Stoch Model Bus Ind 30(6):740–752

    Article  MathSciNet  Google Scholar 

  10. Cavraro G et al (2015) Data-driven approach for distribution network topology detection. 2015 IEEE power & energy society general meeting, pp 1–5

    Google Scholar 

  11. Siemens, Phasor Measurement Unit (PMU) and Grid Monitoring under Products (2018, April 24). Retrieved from https://w3.siemens.com/smartgrid/global/en/products-systems-solutions/protection/pmu-phasor-measurment-unit/pages/pmu-phasor-measurement-unit.aspx

  12. Bolognani S, Bof N, Michelotti D, Muraro R, Schenato L (2013) Identification of power distribution network topology via voltage correlation analysis. In: 52nd IEEE conference on decision and control, Florence

    Google Scholar 

  13. Kezunovic M (2006) Monitoring of power system topology in real-time. In: 39th Hawaii international conference on system sciences, Kauai, 4–7 January 2006

    Google Scholar 

  14. Erseghe T, Tomasin S, Vigato A (2013) Topology estimation for smart micro grids via powerline communications. IEEE Trans Signal Process 61(13):3368–3377

    Article  MathSciNet  Google Scholar 

  15. Deka D, Backhaus S, Chertkov M (2016) Estimating distribution grid topologies: a graphical learning based approach. In: 2016 Power systems computation conference (PSCC), Genoa, pp 1–7

    Google Scholar 

  16. Cavraro G, Kekatos V, Veeramachaneni S (2017) Voltage analytics for power distribution network topology verification. http://arxiv.org/abs/1707.06671 arXiv:1707.06671

  17. Pappu SJ, Bhatt N, Pasumarthy R, Rajeswaran A (2016) Identifying topology of power distribution networks based on smart meter data. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2017.2680542

    Article  Google Scholar 

  18. Markiewicz H, Klajn A. “Voltage disturbances“, Standard EN 50160 – Voltage characteristics in public distribution systems, Wroclaw University of Technology, July 2004

    Google Scholar 

  19. Pandian SS (2005) Calculating voltage drop in power distribution systems. EC&M Electrical Construction & Maintenance 104(6), pC16

    Google Scholar 

  20. Nasar SA, Trutt FC (1998) Electric power systems. CRC Press, Boca Raton

    Google Scholar 

  21. ABB Library. Smart city power distribution, Dokument-Nr.: 1MRS758009, Dokument-Typ: Broschüre, Veröffentlicht: 2015-03-12 15:04:19

    Google Scholar 

  22. DIgSILENT | PowerFactory. https://www.digsilent.de/en/powerfactory.html

  23. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the project, “Smarte Pfosten” (smart lamp post) and is funded by the ZIM program of the Federal Ministry for Economic Affairs (16KN062820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ravanbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravanbach, B., Klement, P., Hanke, B., von Maydell, K. (2019). Automatic Topology Identification with Intelligent Lighting Poles. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25210-6_12

Download citation

Publish with us

Policies and ethics