Advertisement

Zur Bedeutung von Solows Paradoxon: Empirische Evidenz und ihre Übertragbarkeit auf Digitalisierungsinvestitionen in einer Industrie 4.0

  • Robert ObermaierEmail author
  • Stefan Schweikl
Chapter

Zusammenfassung

Die Industrie 4.0 verspricht Anwendern enormes Potenzial zur Steigerung der Prozesseffizienz sowie eine Erhöhung der Produktinnovationen. Viele Unternehmen befürchten daher, ohne umfassende Investitionen in digitale Technologien den Anschluss zu verlieren und am Ende als Verlierer der digitalen Transformation zu gelten. Um dies zu vermeiden, wollen deutsche Industrieunternehmen beispielsweise bis 2020 jährlich rund 40 Mrd. EUR in Industrie 4.0-Anwendungen investieren.

Literatur

  1. Aboal, D., & Tacsir, E. (2017). Innovation and productivity in services and manufacturing: The role of ICT. Industrial and Corporate Change, 27(2), 221–241.CrossRefGoogle Scholar
  2. Acemoglu, D., Dorn, D., Hanson, G. H., & Price, B. (2014). Return of the Solow paradox? IT, productivity, and employment in US manufacturing. American Economic Review, 104(5), 394–399.CrossRefGoogle Scholar
  3. Acemoglu, D., & Restrepo, P. (2018a). Artificial intelligence, automation and work. NBER Working Paper No. 24196.Google Scholar
  4. Acemoglu, D., & Restrepo, P. (2018b). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488–1542.Google Scholar
  5. Alpar, P., & Kim, M. (1990). A microeconomic approach to the measurement of information technology value. Journal of Management Information Systems, 7(2), 55–69.CrossRefGoogle Scholar
  6. Anderson, M. C., Banker, R. D., & Ravindran, S. (2003). The new productivity paradox. Communications of the ACM, 46(3), 91–94.CrossRefGoogle Scholar
  7. Aral, S., & Weill, P. (2007). IT assets, organizational capabilities, and firm performance: How resource allocations and organizational differences explain performance variation. Organization Science, 18(5), 763–780.CrossRefGoogle Scholar
  8. Arrow, K. J. (1962). The economic implications of learning by doing. The Review of Economic Studies, 29(3), 155–173.CrossRefGoogle Scholar
  9. Autor, D., Levy, F., & Murnane, R. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly Journal of Economics, 118(4), 1279–1333.CrossRefGoogle Scholar
  10. Badescu, M., & Garcés-Ayerbe, C. (2009). The impact of information technologies on firm productivity: Empirical evidence from Spain. Technovation, 29(2), 122–129.CrossRefGoogle Scholar
  11. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.CrossRefGoogle Scholar
  12. Barua, A., & Lee, B. (1997). An economic analysis of the introduction of an electronic data interchange system. Information Systems Research, 8(4), 398–422.CrossRefGoogle Scholar
  13. Becchetti, L., Bedoya, D., & Paganetto, L. (2003). ICT investment, productivity and efficiency: Evidence at firm level using a stochastic frontier approach. Journal of Productivity Analysis, 20(2), 143–167.CrossRefGoogle Scholar
  14. Bertschek, I., & Kaiser, U. (2004). Productivity effects of organizational change: Microeconometric evidence. Management Science, 50(3), 394–404.CrossRefGoogle Scholar
  15. Bharadwaj, A. S., Bharadwaj, S. G., & Konsynski, B. R. (1999). Information technology effects on firm performance as measured by Tobin’s q. Management Science, 45(7), 1008–1024.CrossRefGoogle Scholar
  16. Black, S. E., & Lynch, L. M. (2001). How to compete: The impact of workplace practices and information technology on productivity. Review of Economics and Statistics, 83(3), 434–445.CrossRefGoogle Scholar
  17. Bloom, N., Sadun, R., & van Reenen, J. (2012). Americans Do IT Better: US multinationals and the productivity miracle. American Economic Review, 102(1), 167–201.CrossRefGoogle Scholar
  18. Brasini, S., & Freo, M. (2012). The impact of information and communication technologies: An insight at micro-level on one Italian region. Economics of Innovation and New Technology, 21(2), 107–123.CrossRefGoogle Scholar
  19. Bresnahan, T. F., Brynjolfsson, E., & Hitt, L. M. (2002). Information technology, workplace organization, and the demand for skilled labor: Firm-level evidence. The Quarterly Journal of Economics, 117(1), 339–376.CrossRefGoogle Scholar
  20. Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies ‚Engines of growth’? Journal of Econometrics, 65(1), 83–108.CrossRefGoogle Scholar
  21. Brynjolfsson, E. (1993). The productivity paradox of information technology. Communications of the ACM, 36(12), 66–77.CrossRefGoogle Scholar
  22. Brynjolfsson, E. (2003). ROI valuation: The IT productivity gap. Optimize magazine, 21, 1–4.Google Scholar
  23. Brynjolfsson, E., & Hitt, L. M. (1995). Information technology as a factor of production: The role of differences among firms. Economics of Innovation and New Technology, 3(3–4), 183–200.CrossRefGoogle Scholar
  24. Brynjolfsson, E., & Hitt, L. M. (1996). Paradox lost? Firm-level evidence on the returns to information systems spending. Management Science, 42(4), 541–558.CrossRefGoogle Scholar
  25. Brynjolfsson, E., & Hitt, L. M. (1998). Beyond the productivity paradox. Communications of the ACM, 41(8), 49–55.CrossRefGoogle Scholar
  26. Brynjolfsson, E., & Hitt, L. M. (2000). Beyond computation: Information technology, organizational transformation and business performance. Journal of Economic Perspectives, 14(4), 23–48.CrossRefGoogle Scholar
  27. Brynjolfsson, E., & Hitt, L. M. (2003). Computing productivity: Firm-level evidence. Review of Economics and Statistics, 85(4), 793–808.CrossRefGoogle Scholar
  28. Brynjolfsson, E., Hitt, L. M., & Yang, S. (2002). Intangible assets: Computers and organizational capital. Brookings Papers on Economic Activity, (1), 137–181.Google Scholar
  29. Brynjolfsson, E., & McAfee, A. (2011). Race against the machine. Shibuya: Digital Frontier.Google Scholar
  30. Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. NBER Working Paper No. 24001.Google Scholar
  31. Brynjolfsson, E., Rock, D., & Syverson, C. (2018). The productivity J-Curve: How intangibles complement general purpose technologies. NBER Working Paper No. 25148.Google Scholar
  32. Brynjolfsson, E., & Yang, S. (1996). Information technology and productivity: A review of the literature. Advances in Computers, 43,179–214.CrossRefGoogle Scholar
  33. Byrd, T. A., & Marshall, T. E. (1997). Relating information technology investment to organizational performance: A causal model analysis. Omega, 25(1), 43–56.CrossRefGoogle Scholar
  34. Byrne, D. M., Fernald, J. G., & Reinsdorf, M. B. (2016). Does the United States have a productivity slowdown or a measurement problem? Brookings Papers on Economic Activity, (1), 109–182.Google Scholar
  35. Cardona, M., Kretschmer, T., & Strobel, T. (2013). ICT and productivity: Conclusions from the empirical literature. Information Economics and Policy, 25(3), 109–125.CrossRefGoogle Scholar
  36. Castiglione, C., & Infante, D. (2014). ICTs and time-span in technical efficiency gains. A stochastic frontier approach over a panel of Italian manufacturing firms. Economic Modelling, 41, 55–65.CrossRefGoogle Scholar
  37. Chang, Y. B., & Gurbaxani, V. (2012). The impact of IT-related spillovers on long – Run productivity: An empirical analysis. Information Systems Research, 23(3), 868–886.CrossRefGoogle Scholar
  38. Chang, Y. B., & Gurbaxani, V. (2013). An empirical analysis of technical efficiency: The role of IT intensity and competition. Information Systems Research, 24(3), 561–578.CrossRefGoogle Scholar
  39. Chowdhury, S. K. (2006). Investments in ICT-capital and economic performance of small and medium scale enterprises in East Africa. Journal of International Development, 18(4), 533–552.CrossRefGoogle Scholar
  40. Chwelos, P., Ramirez, R., Kraemer, K. L., & Melville, N. P. (2010). Research note – Does technological progress alter the nature of information technology as a production input? New evidence and new results. Information Systems Research, 21(2), 392–408.CrossRefGoogle Scholar
  41. Clemons, E. K., & Row, M. C. (1991). Sustaining IT advantage: The role of structural differences. MIS Quarterly, 15(3), 275–292.CrossRefGoogle Scholar
  42. Commander, S., Harrison, R., & Menezes-Filho, N. (2011). ICT and productivity in developing countries: New firm-level evidence from Brazil and India. Review of Economics and Statistics, 93(2), 528–541.CrossRefGoogle Scholar
  43. Crafts, N. (2018). The productivity slowdown: Is it the ‚new normal’? Oxford Review of Economic Policy, 34(3), 443–460.CrossRefGoogle Scholar
  44. David, P. A. (1990). The dynamo and the computer: An historical perspective on the modern productivity paradox. American Economic Review, 80(2), 355–361.Google Scholar
  45. Dedrick, J., Gurbaxani, V., & Kraemer, K. L. (2003). Information technology and economic performance: A critical review of the empirical evidence. ACM Computing Surveys, 35(1), 1–28.CrossRefGoogle Scholar
  46. Devaraj, S., & Kohli, R. (2000). information technology payoff in the health-care industry: A longitudinal study. Journal of Management Information Systems, 16(4), 41–67.CrossRefGoogle Scholar
  47. Dewan, S., & Min, C. (1997). The substitution of information technology for other factors of production: A firm level analysis. Management Science, 43(12), 1660–1675.CrossRefGoogle Scholar
  48. Dewan, S., Shi, C., & Gurbaxani, V. (2007). Investigating the risk-return relationship of information technology investment: Firm-level empirical analysis. Management Science, 53(12), 1829–1842.CrossRefGoogle Scholar
  49. Doms, M. E., Jarmin, R. S., & Klimek, S. D. (2004). Information technology investment and firm performance in US retail trade. Economics of Innovation and New Technology, 13(7), 595–613.CrossRefGoogle Scholar
  50. Dunne, T., Foster, L., Haltiwanger, J., & Troske, K. R. (2004). Wage and productivity dispersion in United States manufacturing: The role of computer investment. Journal of Labor Economics, 22(2), 397–429.CrossRefGoogle Scholar
  51. Francalanci, C., & Galal, H. (1998). Aligning IT investments and workforce composition: The impact of diversification in life insurance companies. European Journal of Information Systems, 7(3), 175–184.CrossRefGoogle Scholar
  52. Gargallo-Castel, A., & Galve-Górriz, C. (2007). Information technology, complementarities and three measures of organizational performance: Empirical evidence from Spain. Journal of Information Technology Impact, 7(1), 43–58.Google Scholar
  53. Gartner (2018). Gartner Says Global IT Spending to Grow 6.2 Percent in 2018. Gartner. https://www.gartner.com/newsroom/id/3871063. Zugegriffen: 28. Jan. 2019.
  54. Giuri, P., Torrisi, S., & Zinovyeva, N. (2008). ICT, skills, and organizational change: Evidence from Italian manufacturing firms. Industrial and Corporate Change, 17(1), 29–64.CrossRefGoogle Scholar
  55. Gordon, R. J. (2016). The rise and fall of American growth: The US standard of living since the civil war. Princeton: Princeton University Press.CrossRefGoogle Scholar
  56. Hall, B. H., Lotti, F., & Mairesse, J. (2013). Evidence on the impact of R&D and ICT investments on innovation and productivity in Italian firms. Economics of Innovation and New Technology, 22(3), 300–328.CrossRefGoogle Scholar
  57. Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – A taxonomy of data-driven business models used by start-up firms. International Journal of Operations & Production Management, 36(10), 1382–1406.CrossRefGoogle Scholar
  58. Hempell, T. (2005a). Does experience matter? Innovations and the productivity of information and communication technologies in German services. Economics of Innovation and New Technology, 14(4), 277–303.CrossRefGoogle Scholar
  59. Hempell, T. (2005b). What’s spurious, what’s real? Measuring the productivity impacts of ICT at the firm-level. Empirical Economics, 30(2), 427–464.CrossRefGoogle Scholar
  60. Hitt, L. M., & Brynjolfsson, E. (1996). Productivity, business profitability, and consumer surplus: Three different measures of information technology value. MIS Quarterly, 121–142.Google Scholar
  61. Hitt, L. M., Wu, D. J., & Zhou, X. (2002). Investment in enterprise resource planning: Business impact and productivity measures. Journal of Management Information Systems, 19(1), 71–98.CrossRefGoogle Scholar
  62. Hu, Q., & Plant, R. (2001). An empirical study of the casual relationship between IT investment and firm performance. Information Resources Management Journal, 14(3), 15–26.CrossRefGoogle Scholar
  63. Huang, C. J., Fu, T.-T., Lai, H.-P., & Yang, Y.-L. (2017). Semiparametric smooth coefficient quantile estimation of the production profile. Empirical Economics, 52(1), 373–392.CrossRefGoogle Scholar
  64. Huang, T.-H. (2005). A study on the productivities of IT capital and computer labor: Firm-level evidence from Taiwan’s banking industry. Journal of Productivity Analysis, 24(3), 241–257.CrossRefGoogle Scholar
  65. IDC (2018). Worldwide spending on cognitive and artificial intelligence systems will grow to $19.1 Billion in 2018, According to new IDC Spending Guide. IDC. https://www.idc.com/getdoc.jsp?containerId=prUS43662418. Zugegriffen: 28. Jan. 2019.
  66. Kart, L., Heudecker, N., & Buytendijk, F. (2013). Survey analysis: Big data adoption in 2013 shows substance behind the hype. Gartner. https://www.gartner.com/doc/2589121/survey-analysis-big-data-adoption. Zugegriffen: 28. Jan. 2019.
  67. Kılıçaslan, Y., Sickles, R. C., Atay Kayış, A., & Üçdoğruk Gürel, Y. (2017). Impact of ICT on the productivity of the firm: Evidence from Turkish manufacturing. Journal of Productivity Analysis, 47(3), 277–289.CrossRefGoogle Scholar
  68. Ko, M., & Osei-Bryson, K.-M. (2004). Using regression splines to assess the impact of information technology investments on productivity in the health care industry. Information Systems Journal, 14(1), 43–63.CrossRefGoogle Scholar
  69. Ko, M., & Osei-Bryson, K.-M. (2008). Reexamining the impact of information technology investment on productivity using regression tree and multivariate adaptive regression splines (MARS). Information Technology Management, 9(4), 285–299.CrossRefGoogle Scholar
  70. Kudyba, S., & Diwan, R. (2002). Research Report: Increasing Returns to Information Technology. Information Systems Research, 13(1), 104–111.CrossRefGoogle Scholar
  71. Kwon, M. J., & Stoneman, P. (1995). The impact of technology adoption on firm productivity. Economics of Innovation and New Technology, 3(3–4), 219–234.CrossRefGoogle Scholar
  72. Lee, B., & Barua, A. (1999). An integrated assessment of productivity and efficiency impacts of information technology investments: Old data, new analysis and evidence. Journal of Productivity Analysis, 12(1), 21–43.CrossRefGoogle Scholar
  73. Lee, B., & Menon, N. M. (2000). Information technology value through different normative lenses. Journal of Management Information Systems, 16(4), 99–119.CrossRefGoogle Scholar
  74. Lee, G., & Perry, J. L. (2002). Are computers boosting productivity? A test of the paradox in State Governments. Journal of Public Administration Research and Theory, 12(1), 77–102.CrossRefGoogle Scholar
  75. Lee, S., Xiang, J. Y., & Kim, J. K. (2011). Information technology and productivity: Empirical evidence from the Chinese electronics industry. Information & Management, 48(2–3), 79–87.CrossRefGoogle Scholar
  76. Lehr, B., & Lichtenberg, F. (1999). Information technology and its impact on productivity: Firm-level evidence from government and private data sources, 1977–1993. The Canadian Journal of Economics, 32(2), 335–362.CrossRefGoogle Scholar
  77. Lehr, W., & Lichtenberg, F. R. (1998). Computer use and productivity growth in US Federal Government agencies, 1987-92. The Journal of Industrial Economics, 46(2), 257–279.CrossRefGoogle Scholar
  78. Licht, G., & Moch, D. (1999). Innovation and information technology in services. The Canadian Journal of Economics, 32(2), 363–383.CrossRefGoogle Scholar
  79. Lichtenberg, F. R. (1995). The output contributions of computer equipment and personnel: A firm-level analysis. Economics of Innovation and New Technology, 3(3–4), 201–218.CrossRefGoogle Scholar
  80. Lin, W. T., & Shao, B. B. M. (2006). The business value of information technology and inputs substitution: The productivity paradox revisited. Decision Support Systems, 42(2), 493–507.CrossRefGoogle Scholar
  81. Liu, T.-K., Chen, J.-R., Huang, C. J., & Yang, C.-H. (2014). Revisiting the productivity paradox: A semiparametric smooth coefficient approach based on evidence from Taiwan. Technological Forecasting and Social Change, 81, 300–308.CrossRefGoogle Scholar
  82. Loveman, G. W. (1994). An assessment of the productivity impact of information technologies. In A. Thomas, S. Michael (Hrsg.), Information Technology and the Corporation of the 1990s: Research Studies (S. 84–110). New York: Oxford University Press.Google Scholar
  83. Luo, Y., & Bu, J. (2016). How valuable is information and communication technology? A study of emerging economy enterprises. Journal of World Business, 51(2), 200–211.CrossRefGoogle Scholar
  84. Macdonald, S., Anderson, P., & Kimbel, D. (2000). Measurement or management?: Revisiting the productivity paradox of information technology. Vierteljahrshefte zur Wirtschaftsforschung, 69(4), 601–617.CrossRefGoogle Scholar
  85. Mahmood, M. A., & Mann, G. J. (1993). Measuring the organizational impact of information technology investment: An exploratory study. Journal of Management Information Systems, 10(1), 97–122.CrossRefGoogle Scholar
  86. Marsh, I. W., Rincon-Aznar, A., Vecchi, M., & Venturini, F. (2017). We see ICT spillovers everywhere but in the econometric evidence: A reassessment. Industrial and Corporate Change, 26(6), 1067–1088.CrossRefGoogle Scholar
  87. Mata, F. J., Fuerst, W. L., & Barney, J. B. (1995). Information technology and sustained competitive advantage: A resource-based analysis. MIS Quarterly, 19(4), 487–505.CrossRefGoogle Scholar
  88. Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information technology and organizational performance: An integrative model of IT business value. MIS Quarterly, 28(2), 283–322.CrossRefGoogle Scholar
  89. Melville, N., Gurbaxani, V., & Kraemer, K. (2007). The productivity impact of information technology across competitive regimes: The role of industry concentration and dynamism. Decision Support Systems, 43(1), 229–242.CrossRefGoogle Scholar
  90. Menon, N. M., Lee, B., & Eldenburg, L. (2000). Productivity of information systems in the healthcare industry. Information Systems Research, 11(1), 83–92.CrossRefGoogle Scholar
  91. Menon, N. M., Yaylacicegi, U., & Cezar, A. (2009). Differential effects of the two types of information systems: A hospital-based study. Journal of Management Information Systems, 26(1), 297–316.CrossRefGoogle Scholar
  92. Milgrom, P., & Roberts, J. (1990). The economics of modern manufacturing: Technology, strategy, and organization. American Economic Review, 80(3), 511–528.Google Scholar
  93. Milgrom, P., & Roberts, J. (1995). Complementarities and fit strategy, structure, and organizational change in manufacturing. Journal of Accounting and Economics, 19(2–3), 179–208.CrossRefGoogle Scholar
  94. Mitra, S., & Chaya, A. K. (1996). Analyzing cost-effectiveness of organizations: The impact of information technology spending. Journal of Management Information Systems, 13(2), 29–57.CrossRefGoogle Scholar
  95. Moshiri, S., & Simpson, W. (2011). Information technology and the changing workplace in Canada: Firm-level evidence. Industrial and Corporate Change, 20(6), 1601–1636.CrossRefGoogle Scholar
  96. Neirotti, P., & Paolucci, E. (2007). Assessing the strategic value of Information Technology: An analysis on the insurance sector. Information & Management, 44(6), 568–582.CrossRefGoogle Scholar
  97. Obermaier, R. (2017). Industrie 4.0 als unternehmerische Gestaltungsaufgabe: Strategische und operative Handlungsfelder für Industriebetriebe. In R. Obermaier (Hrsg.), Industrie 4.0 als unternehmerische Gestaltungsaufgabe – Betriebswirtschaftliche, technische und rechtliche Herausforderungen (S. 3–34). Wiesbaden: Gabler.CrossRefGoogle Scholar
  98. Oracle (2018). Industrie 4.0 – Deutsche Hersteller vermissen noch messbare Ergebnisse. Oracle. https://www.oracle.com/de/corporate/pressrelease/german-manufacturers-miss-measurable-results-2018-04-24.html. Zugegriffen: 28. Jan. 2019.
  99. Osei-Bryson, K.-M., & Ko, M. (2004). Exploring the relationship between information technology investments and firm performance using regression splines analysis. Information & Management, 42(1), 1–13.CrossRefGoogle Scholar
  100. Oz, E. (2005). Information technology productivity: In search of a definite observation. Information & Management, 42(6), 789–798.CrossRefGoogle Scholar
  101. Polák, P. (2017). The productivity paradox: A meta-analysis. Information Economics and Policy, 38,38–54.CrossRefGoogle Scholar
  102. Prattipati, S. N., & Mensah, M. O. (1997). Information systems variables and management productivity. Information & Management, 33(1), 33–43.CrossRefGoogle Scholar
  103. PwC (2014). Industrie 4.0 – Chancen und Herausforderungen Der vierten industriellen Revolution. PwC. https://www.strategyand.pwc.com/media/file/Industrie-4-0.pdf. Zugegriffen: 28. Jan. 2019.
  104. Rai, A., Patnayakuni, R., & Patnayakuni, N. (1996). Refocusing where and how IT value is realized: An empirical investigation. Omega, 24(4), 399–412.CrossRefGoogle Scholar
  105. Rai, A., Patnayakuni, R., & Patnayakuni, N. (1997). Technology investment and business performance. Communications of the ACM, 40(7), 89–97.CrossRefGoogle Scholar
  106. Ramirez, R., Melville, N., & Lawler, E. (2010). Information technology infrastructure, organizational process redesign, and business value: An empirical analysis. Decision Support Systems, 49(4), 417–429.CrossRefGoogle Scholar
  107. Rammer, C., Jäger, A., Krieger, B., Lerch, C., Licht, G., Peters, B., & Spielkamp, A. (2018). Produktivitätsparadoxon im Maschinenbau. Impuls-Stiftung. http://www.impuls-stiftung.de/studien. Zugegriffen: 28. Jan. 2019.
  108. Ross, A. (2002). A multi-dimensional empirical exploration of technology investment, coordination and firm performance. International Journal of Physical Distribution & Logistics Management, 32(7), 591–609.CrossRefGoogle Scholar
  109. Sabherwal, R., & Jeyaraj, A. (2015). Information technology impacts on firm performance: An extension of Kohli and Devaraj (2003). MIS Quarterly, 39(4), 809–836.CrossRefGoogle Scholar
  110. Schryen, G. (2013). Revisiting IS business value research: What we already know, what we still need to know, and how we can get there. European Journal of Information Systems, 22(2), 139–169.CrossRefGoogle Scholar
  111. Shu, W., & Strassmann, P. A. (2005). Does information technology provide banks with profit? Information & Management, 42(5), 781–787.CrossRefGoogle Scholar
  112. Simon, H. A. (1987). The steam engine and the computer: What makes technology revolutionary. Educom Bulletin, 22(1), 2–5.Google Scholar
  113. Sircar, S., & Choi, J. (2009). A study of the impact of information technology on firm performance: A flexible production function approach. Information System Journal, 19(3), 313–339.CrossRefGoogle Scholar
  114. Sircar, S., Turnbow, J. L., & Bordoloi, B. (2000). A framework for assessing the relationship between information technology investments and firm performance. Journal of Management Information Systems, 16(4), 69–97.CrossRefGoogle Scholar
  115. Solow, R. M. (12. Juli 1987). We’d better watch out. New York Times Book Review, S. 36.Google Scholar
  116. Spitz-Oener, A. (2006). Technical change, job tasks, and rising educational demands: Looking outside the wage structure. Journal of Labor Economics, 24(2), 235–270.CrossRefGoogle Scholar
  117. Statistisches Bundesamt (2018). Volkswirtschaftliche Gesamtrechnung. Inlandsproduktberechnung – Lange Reihen ab 1970. DeStatis. https://www.destatis.de/DE/Publikationen/Thematisch/VolkswirtschaftlicheGesamtrechnungen/Inlandsprodukt/InlandsproduktsberechnungLangeReihenPDF_2180150.pdf?__blob=publicationFile. Zugegriffen: 28. Jan. 2019.
  118. Strassmann, P. A. (1990). The business value of computers: An executive’s guide. New Canaan: Information Economics Press.Google Scholar
  119. Syverson, C. (2017). Challenges to mismeasurement explanations for the US productivity slowdown. Journal of Economic Perspectives, 31(2), 165–186.CrossRefGoogle Scholar
  120. Tam, K. Y. (1998). Analysis of firm-level computer investments: A comparative study of three Pacific-rim economies. IEEE Transactions on Engineering Management, 45(3), 276–286.CrossRefGoogle Scholar
  121. Tambe, P., & Hitt, L. M. (2012). The productivity of information technology investments: New evidence from IT labor data. Information Systems Research, 23(3), 599–617.CrossRefGoogle Scholar
  122. Tambe, P., & Hitt, L. M. (2014a). Job hopping, information technology spillovers, and productivity growth. Management Science, 60(2), 338–355.CrossRefGoogle Scholar
  123. Tambe, P., & Hitt, L. M. (2014b). Measuring information technology spillovers. Information Systems Research, 25(1), 53–71.CrossRefGoogle Scholar
  124. Tambe, P., Hitt, L. M., & Brynjolfsson, E. (2012). The extroverted firm: How external information practices affect innovation and productivity. Management Science, 58(5), 843–859.CrossRefGoogle Scholar
  125. Thong, J. Y. L., Yap, C.-S., & Raman, K. S. (1996). Top management support, external expertise and information systems implementation in small businesses. Information Systems Research, 7(2), 248–267.CrossRefGoogle Scholar
  126. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222.CrossRefGoogle Scholar
  127. Triplett, J. E. (1999). The solow productivity paradox: What do computers do to productivity? The Canadian Journal of Economics, 32(2), 309–334.CrossRefGoogle Scholar
  128. Wade, M., & Hulland, J. (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1), 107–142.CrossRefGoogle Scholar
  129. Wang, P. (2010). Chasing the hottest IT: Effects of information technology fashion on organizations. MIS Quarterly, 34(1), 63–85.CrossRefGoogle Scholar
  130. Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), 8–23.Google Scholar
  131. Weill, P. (1992). The relationship between investment in information technology and firm performance: A study of the valve manufacturing sector. Information Systems Research, 3(4), 307–333.CrossRefGoogle Scholar
  132. Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180.CrossRefGoogle Scholar
  133. Wilson, D. J. (2009). Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits. Review of Economics and Statistics, 91(2), 431–436.CrossRefGoogle Scholar
  134. Wu, L., Jin, F., & Hitt, L. M. (2018). Are all spillovers created equal? A network perspective on information technology labor movements. Management Science, 64(7), 3168–3186.CrossRefGoogle Scholar
  135. Yorukoglu, M. (1998). The information technology productivity paradox. Review of Economic Dynamics, 1(2), 551–592.CrossRefGoogle Scholar
  136. Zhu, K. (2004). The complementarity of information technology infrastructure and e-commerce capability: A resource-based assessment of their business value. Journal of Management Information Systems, 21(1), 167–202.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Universität PassauPassauDeutschland

Personalised recommendations