Advertisement

Künstliche Intelligenz: Strategische Herausforderungen für etablierte Unternehmen

  • Justus WolffEmail author
  • Andreas Keck
  • Andreas König
  • Lorenz Graf-Vlachy
  • Julia Menacher
Chapter

Zusammenfassung

Ohne Zweifel ist das Phänomen der Industrie 4.0 für sich gesehen eine einschneidende Entwicklung in der globalen Wirtschaft. Was die Industrie 4.0 allerdings zu einer besonders großen Herausforderung werden lässt, ist die Tatsache, dass gleichzeitig mit ihr zahlreiche weitere radikale und aus der Digitalisierung und Vernetzung entspringende Veränderungen einhergehen. Zusammen mit der Industrie 4.0 werden sie die ökomischen, politischen und sozialen Rahmenbedingungen unserer Gesellschaft entscheidend verändern.

Literatur

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Arvix. https://arxiv.org/abs/1603.04467. Zugegriffen: 6. Dez. 2017.
  2. AITopics. (2017). A brief history of AI. AITopics. https://aitopics.org/misc/brief-history. Zugegriffen: 6. Dez. 2017.
  3. Anthony, M., & Bartlett, P. L. (2009). Neural network learning: Theoretical foundations. Cambridge: Cambridge University Press.Google Scholar
  4. Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The Journal of Finance, 59(3), 1259–1294.CrossRefGoogle Scholar
  5. Armstrong, S., Sotala, K., & ÓhÉigeartaigh, S. S. (2014). The errors, insights and lessons of famous AI predictions – And what they mean for the future. Journal of Experimental & Theoretical Artificial Intelligence, 26, 317–342.CrossRefGoogle Scholar
  6. Bellman, R. E. (1978). An introduction to artificial intelligence: Can computers think?. San Francisco: Boyd & Fraser.Google Scholar
  7. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.Google Scholar
  8. CB Insights. (2018). Artificial intelligence deals tracker: 5K deals across 25+ industries in one heatmap. CB Insights. https://www.cbinsights.com/research/artificial-intelligence-investment-heatmap-expert-intelligence/. Zugegriffen: 31. Dez. 2018.
  9. Chaboud, A. P., Chiquoine, B., Hjalmarsson, E., & Vega, C. (2014). Rise of the machines: Algorithmic trading in the foreign exchange market. Journal of Finance, 69(5), 2045–2084.CrossRefGoogle Scholar
  10. Christensen, C. M., Kaufman, S. P., & Shih, W. C. (2008). Innovation killers. Harvard Business Review, 86(1), 98–105.Google Scholar
  11. Crevier, D. (1993). AI: The tumultuous search for artificial intelligence. New York: Basic Books.Google Scholar
  12. Deloitte. (2016). Artificial intelligence innovation report 2016. Deloitte. https://www2.deloitte.com/content/dam/Deloitte/at/Documents/human-capital/artificial-intelligence-innovation-report.pdf. Zugegriffen: 6. Dez. 2017.
  13. Deng, J., Cummins, N., Schmitt, M., Qian, K., Ringeyal, F., & Schuller, B. (2017). Speech-based diagnosis of autism spectrum condition by generative adversarial network representations. Presentation at the 7th international digital health conference, London.Google Scholar
  14. Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., & Puche, J. (2016). A vision of industry 4.0 from an artificial intelligence point of view. Presentation at the 18th ICAI international conference on artificial intelligence, Las Vegas.Google Scholar
  15. Easley, R., Guo, H., & Krämer, J. (2018). From network neutrality to data neutrality: A techno-economic framework and research agenda. Information Systems Research, 29(2), 253–272.Google Scholar
  16. Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. RadioGraphics, 37(2), 505–515.CrossRefGoogle Scholar
  17. Finley, K. (2016). Amazon’s giving away the AI behind its product recommendations. Wired. https://www.wired.com/2016/05/amazons-giving-away-ai-behind-product-recommendations/. Zugegriffen: 10. Dez. 2017.
  18. Furman, J. (2016). Is this time different? The opportunities and challenges of artificial intelligence. Presentation at AI now: The social and economic implications of artificial intelligence technologies in the near term, New York.Google Scholar
  19. Gerstner, W. C., König, A., Enders, A., & Hambrick, D. C. (2013). CEO narcissism, audience engagement, and organizational adoption of technological discontinuities. Administrative Science Quarterly, 58(2), 257–291.CrossRefGoogle Scholar
  20. Ghoshal, S., & Bartlett, C. A. (1988). Creation, adoption and diffusion of innovations by subsidiaries of multinational corporations. Journal of International Business Studies, 19(3), 365–388.CrossRefGoogle Scholar
  21. Gimmy, G., Kanbach, D., Stubner, S., König, A., & Enders, A. (2017). What BMW’s corporate VC offers that regular investors can’t. Harvard Business Review. https://hbr.org/2017/07/what-bmws-corporate-vc-offers-that-regular-investors-cant. Zugegriffen: 28. Jan. 2019.
  22. Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Zhang, Q., et al. (2017). Developing a dengue forecast model using machine learning: A case study in China. PLoS Neglected Tropical Diseases, 11(10), e0005973.CrossRefGoogle Scholar
  23. Hambrick, D. C., & Frederikson, J. W. (2001). Are you sure you have a strategy? Academy of Management Executive, 15(4), 48–59.Google Scholar
  24. Hambrick, D. C., & Mason, P. A. (1984). Upper echelons: The organization as a reflection of its top managers. Academy of Management Review, 9(2), 193–206.CrossRefGoogle Scholar
  25. Huang, C., Mezencev, R., McDonald, J. F., & Vannberg, F. (2017). Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PloS ONE, 12(10), e0186906.CrossRefGoogle Scholar
  26. Janott, C., Schuller, B., & Heiser, C. (2017). Akustische Informationen von Schnarchgeräuschen. HNO, 65(2), 107–116.CrossRefGoogle Scholar
  27. Kammerlander, N., König, A., & Richards, M. (2018). Why do incumbents respond heterogeneously to disruptive innovations? The interplay of organizational domain identity and role identity. Journal of Management Studies, im Druck.Google Scholar
  28. Kind, S., Wangler, L., Kerlen, C., & Wessels, J. (2017). Gründungs-update: Aktuelle Daten und Fakten zum Gründungsgeschehen. Gründerwettbewerb. https://www.gruenderwettbewerb.de/service/publikationen/gruenderupdate-1-2017. Zugegriffen: 6. Dez. 2017.
  29. Kirilenko, A., & Lo, A. (2013). Moore’s law versus Murphy’s law: Algorithmic trading and Its discontents. Journal of Economic Perspectives, 27(2), 51–72.CrossRefGoogle Scholar
  30. König, A. 2009. Cognitive framing and incumbent inertia in response to technological discontinuities: A replication and extension of the gilbert study in the german book retailing industry. Berlin: Pro Business.Google Scholar
  31. König, A. (2012). Technological discontinuities. In E. Kessler, J. M. Bartunek, M. Hitt, A. S. Huff, P. R. Lawrence, J. Pfeffer, A. H. Van de Ven, & D. A. Whetten (Hrsg.), Encyclopedia of management theory (S. 824–829). Thousand Oaks: Sage.Google Scholar
  32. König A., & Graf-Vlachy, L. (2017). Industrie 4.0: Strategische Innovation durch Strategische Sensitivität. In R. Obermaier (Hrsg.), Industrie 4.0 als unternehmerische Gestaltungsaufgabe. (S. 53-67). Wiesbaden: Springer Gabler.Google Scholar
  33. König, A., Graf-Vlachy, L., Link F., & Jungeblodt O., (2018). Competence for Digitalization and Attention to Digitalization: An Empirical Study in Germany, US, and UK. Working Paper, Universität Passau.Google Scholar
  34. König, A., Kammerlander, N., & Enders, A. (2013). The family innovator’s dilemma: How family influence affects the adoption of discontinuous technologies by incumbent firms. Academy of Management Review, 38(3), 418–441.CrossRefGoogle Scholar
  35. König, A., Fehn, A., Puck, J., & Graf-Vlachy, L. (2017). Primary or complex? Towards a theory of metaphorical strategy communication in MNCs. Journal of World Business, 52(2), 270–285.CrossRefGoogle Scholar
  36. Kurzweil, R. (1990). The age of intelligent machines. Cambridge: MIT Press.Google Scholar
  37. Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Penguin.Google Scholar
  38. Lindebaum, D., Vesa, M., & den Hond, F. (2019). Insights from the machine stops to better understand rational assumptions in algorithmic decision-making and its implications for organizations. Academy of Management Review, im Druck.Google Scholar
  39. Low, S. K., Zembutsu, H., & Nakamura, Y. (2018). Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer Science, 109(3), 497–506.Google Scholar
  40. McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115–133.CrossRefGoogle Scholar
  41. Moravec, H. P. (1988). Mind children: The future of robot and human intelligence. Cambridge: Harvard University Press.Google Scholar
  42. Müller, V. C., & Bostrom, N. (2016). Future progress in artificial intelligence: A survey of expert opinion. In V. Müller (Hrsg.), Fundamental issues of artificial intelligence (S. 553–571). Berlin: Springer.CrossRefGoogle Scholar
  43. Natarajan, P. (2016). The AI spring – Innovations for the next decade. München: Presentation at Confluence.Google Scholar
  44. O’Reilly, C. A., & Tushman, M. L. (2013). Organizational ambidexterity: Past, present, and future. Academy of Management Perspectives, 27(4), 324–338.CrossRefGoogle Scholar
  45. Obermaier, R. (2017). Industrie 4.0 als unternehmerische Gestaltungsaufgabe: Strategische und operative Handlungsfelder für Industriebetriebe. In R. Obermaier (Hrsg.), Industrie 4.0 als unternehmerische Gestaltungsaufgabe (2. Aufl., S. 3–34). Wiesbaden: Gabler.CrossRefGoogle Scholar
  46. Pakalsi, I. (2017). Neues Tool übersetzt viel besser als Google und Microsoft. Golem.de. https://www.golem.de/news/deepl-im-hands-on-neues-tool-uebersetzt-viel-besser-als-google-und-microsoft-1708-129715.html. Zugegriffen: 6. Dez. 2017.
  47. Poole, D., Mackworth, A. K., & Goebel, R. (1998). Computational intelligence: A logical approach. Oxford: Oxford University Press.Google Scholar
  48. Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence. MIT Sloan Management Review. http://marketing.mitsmr.com/offers/AI2017/59181-MITSMR-BCG-Report-2017.pdf. Zugegriffen: 6. Dez. 2017.
  49. Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach. Englewood Cliffs: Prentice Hall.Google Scholar
  50. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3. Aufl.). Essex: Pearson.Google Scholar
  51. Russo, M., Thaker, A., & Adam, S. (2018). The coming quantum leap in computing. Boston Consulting Group. https://www.bcg.com/publications/2018/coming-quantum-leap-computing.aspx. Zugegriffen: 1. Juni 2018.
  52. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. Arvix. https://arxiv.org/abs/1712.01815. Zugegriffen: 6. Dez. 2017.
  53. Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159.CrossRefGoogle Scholar
  54. Statista. (2017). Disclosed funding for artificial intelligence (AI) startups worldwide from 2011 to 2016. Statista. https://www.statista.com/statistics/672712/worldwide-artificial-intelligence-startup-disclosed-funding/. Zugegriffen: 6. Dez. 2017.
  55. Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2016). Artificial intelligence and life in 2030: One hundred year study on artificial intelligence. Report of the 2015–2016 study panel. Stanford University. http://ai100.stanford.edu/2016-report. Zugegriffen: 5. Dez. 2017.
  56. Strange, A. (2014). Elon Musk’s secret fear: Artificial intelligence will turn deadly in 5 years. Mashable. http://mashable.com/2014/11/17/elon-musk-singularity/. Zugegriffen: 12. Dez. 2017.
  57. Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. New York: Borzoi Books.Google Scholar
  58. Topol, E. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25, 44–56.CrossRefGoogle Scholar
  59. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.CrossRefGoogle Scholar
  60. Winston, P. H. (1992). Artificial Intelligence (3. Aufl.). Boston: Addison-Wesley.Google Scholar
  61. Wolff, J., & Keck, A. (2017). Enterprise valuation for artificial intelligence and big data companies. Working paper.Google Scholar
  62. Yu, K., Beam A., & Kohane, I. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2, 719–731.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Justus Wolff
    • 1
    Email author
  • Andreas Keck
    • 4
  • Andreas König
    • 2
  • Lorenz Graf-Vlachy
    • 2
  • Julia Menacher
    • 3
  1. 1.Syte Institute for Digital HealthHamburgDeutschland
  2. 2.Universität PassauPassauDeutschland
  3. 3.LMU MünchenMünchenDeutschland
  4. 4.Syte Institute for Digital HealthHamburgDeutschland

Personalised recommendations