Potential of Virtual Test Environments for the Development of Highly Automated Driving Functions Using Neural Networks

  • Raphael PfefferEmail author
  • Patrick Ukas
  • Eric Sax
Conference paper
Part of the Proceedings book series (PROCEE)


This paper outlines the implications and challenges that modern algorithms such as neural networks may have on the process of function development for highly automated driving. In this context, an approach is presented how synthetically generated data from a simulation environment can contribute to accelerate and automate the complex process of data acquisition and labeling for these neural networks. A concept of an exemplary implementation is shown and first results of the training of a convolutional neural network using these synthetic data are presented.


  1. 1.
    SAE International: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2017). 22 Feb 2018
  2. 2.
    Maurer, M., Gerdes, J.C., Lenz, B., Winner, H.: Autonomes Fahren. Springer Vieweg, Berlin (2015)CrossRefGoogle Scholar
  3. 3.
    Pfeffer, R., Leichsenring, T.: Continuous development of highly automated driving functions with vehicle-in-the-loop using the example of euro NCAP scenarios. In: 7th Conference Simulation and Testing for Vehicle Technology, Berlin (2016)Google Scholar
  4. 4.
    Otten, S., Bach, J., Wohlfahrt, C.,King, C., Lier, J., Schmid, H., Schmerler, S., Sax, E.: Automated assessment and evaluation of digital test drives. In: Zachäus, C., Müller, B., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2017. Lecture Notes in Mobility. Springer, Cham (2017)Google Scholar
  5. 5.
    Lutz, A., Schick, B., Holzmann, H.: Simulation methods supporting homologation of Electronic stability control in vehicle variants. Veh. Syst. Dyn. 55(10), 1432–1497 (2017) CrossRefGoogle Scholar
  6. 6.
    Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? In: Proceedings of International Conference on Robotics and Automation (ICRA) (2017)Google Scholar
  7. 7.
    Marin, J., Vazquez, D., Geronimo, D., Lopez, A.M.: Learning appearance in virtual scenarios for pedestrian detection. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  8. 8.
    Nilsson, J., Fredriksson, J., Gu, I.Y.-H., Andersson, P.: Pedestrian detection using augmented training data. In: 22nd International Conference on Pattern Recognition (ICPR) (2014)Google Scholar
  9. 9.
    Barbosa, I., Cristani, M., Caputo, B., Rognhaugen, A., Theoharis, T.: looking beyond appearances: synthetic training data for deep CNNS in re-identification. In: Computer Vision and Pattern Recognition (2017)Google Scholar
  10. 10.
    Rajpura, P.S., Bojinov, H., Hegde, R.S.: Object detection using deep CNNs trained on synthetic images. In: Computer Vision and Pattern Recognition (2017)Google Scholar
  11. 11.
    Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3D models. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  12. 12.
    Falcini, F., Lami, G., Constanza, A.: Deep learning in automotive software. In: IEEE Software, May/June 2017, pp. 56–63. IEEE Computer Society (2017)CrossRefGoogle Scholar
  13. 13.
    Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation – a set of best practices for high quality, economical video labeling. Int. J. Comput. Vis. 101(1), 184–204 (2013)CrossRefGoogle Scholar
  14. 14.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.: SSD: Single Shot MultiBox Detector. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  15. 15.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)CrossRefGoogle Scholar
  16. 16.
    Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI Vision Benchmark Suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute for TechnologyKarlsruheGermany
  2. 2.Hochschule KemptenKemptenGermany

Personalised recommendations