Generalized cavitation criterion for poro-hyperelastic materials

  • M. DrassEmail author
  • V. A. Kolupaev
  • P. L. Rosendahl
  • J. Schneider
  • W. Becker
Conference paper


A cavitation criterion defines a failure surface in three-dimensional stress space, which represents the onset of excessive void growth and therefore the strong degradation of the bulk modulus considering rubber-like materials [2, 3]. The damaging effect of cavitation was analyzed experimentally by Busse [1], Yerzley [9] and later Gent & Lindley [5]. In the pioneering work of Gent & Lindley [5], two flat cylinders vulcanized with thin sheets of natural rubber were tested in axial tension.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    W. F. Busse. Physics of rubber as related to the automobile. Journal of Applied Physics, 9(7):438–451, 1938.Google Scholar
  2. [2].
    M. Drass, V. A. Kolupaev, J. Schneider, and S. Kolling. On cavitation in transparent structural silicone adhesive: TSSA. Glass Structures & Engineering, pages 1–20, 2018.Google Scholar
  3. [3].
    M. Drass, J. Schneider, and S. Kolling. Damage effects of adhesives in modern glass façades: a micro-mechanically motivated volumetric damage model for poro-hyperelastic materials. International Journal of Mechanics and Materials in Design, Nov 2017.Google Scholar
  4. [4].
    M. Drass, J. Schneider, and S. Kolling. Novel volumetric helmholtz free energy function accounting for isotropic cavitation at finite strains. Materials & Design, 2017.Google Scholar
  5. [5].
    A. N. Gent and P. B. Lindley. Internal rupture of bonded rubber cylinders in tension. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 249(1257):195–205, 1959.Google Scholar
  6. [6].
    H. S. Hou and R. Abeyaratne. Cavitation in elastic and elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 40(3):571–592, 1992.Google Scholar
  7. [7].
    V. A. Kolupaev. Equivalent Stress Concept for Limit State Analysis. Springer, Cham, 2018.Google Scholar
  8. [8].
    T. Lopez-Pamies, O.and Nakamura and M. Idiart. Cavitation in elastomeric solids: Ii—onset-of-cavitation surfaces for neo-hookean materials. Journal of the Mechanics and Physics of Solids, 59(8):1488–1505, 2011.Google Scholar
  9. 9.
    F.L. Yerzley. Adhesion of neoprene to metal. Industrial & Engineering Chemistry, 31(8):950–956, 1939.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. Drass
    • 1
    Email author
  • V. A. Kolupaev
    • 2
  • P. L. Rosendahl
    • 3
  • J. Schneider
    • 1
  • W. Becker
    • 3
  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtDeutschland
  2. 2.Fraunhofer Institute for Structural Durability and System ReliabilityDarmstadtDeutschland
  3. 3.Fachgebiet StrukturmechanikTechnische Universität DarmstadtDarmstadtDeutschland

Personalised recommendations