Advertisement

Generalized cavitation criterion for poro-hyperelastic materials

  • M. DrassEmail author
  • V. A. Kolupaev
  • P. L. Rosendahl
  • J. Schneider
  • W. Becker
Conference paper

Zusammenfassung

A cavitation criterion defines a failure surface in three-dimensional stress space, which represents the onset of excessive void growth and therefore the strong degradation of the bulk modulus considering rubber-like materials [2, 3]. The damaging effect of cavitation was analyzed experimentally by Busse [1], Yerzley [9] and later Gent & Lindley [5]. In the pioneering work of Gent & Lindley [5], two flat cylinders vulcanized with thin sheets of natural rubber were tested in axial tension.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1].
    W. F. Busse. Physics of rubber as related to the automobile. Journal of Applied Physics, 9(7):438–451, 1938.Google Scholar
  2. [2].
    M. Drass, V. A. Kolupaev, J. Schneider, and S. Kolling. On cavitation in transparent structural silicone adhesive: TSSA. Glass Structures & Engineering, pages 1–20, 2018.Google Scholar
  3. [3].
    M. Drass, J. Schneider, and S. Kolling. Damage effects of adhesives in modern glass façades: a micro-mechanically motivated volumetric damage model for poro-hyperelastic materials. International Journal of Mechanics and Materials in Design, Nov 2017.Google Scholar
  4. [4].
    M. Drass, J. Schneider, and S. Kolling. Novel volumetric helmholtz free energy function accounting for isotropic cavitation at finite strains. Materials & Design, 2017.Google Scholar
  5. [5].
    A. N. Gent and P. B. Lindley. Internal rupture of bonded rubber cylinders in tension. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 249(1257):195–205, 1959.Google Scholar
  6. [6].
    H. S. Hou and R. Abeyaratne. Cavitation in elastic and elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 40(3):571–592, 1992.Google Scholar
  7. [7].
    V. A. Kolupaev. Equivalent Stress Concept for Limit State Analysis. Springer, Cham, 2018.Google Scholar
  8. [8].
    T. Lopez-Pamies, O.and Nakamura and M. Idiart. Cavitation in elastomeric solids: Ii—onset-of-cavitation surfaces for neo-hookean materials. Journal of the Mechanics and Physics of Solids, 59(8):1488–1505, 2011.Google Scholar
  9. 9.
    F.L. Yerzley. Adhesion of neoprene to metal. Industrial & Engineering Chemistry, 31(8):950–956, 1939.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. Drass
    • 1
    Email author
  • V. A. Kolupaev
    • 2
  • P. L. Rosendahl
    • 3
  • J. Schneider
    • 1
  • W. Becker
    • 3
  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtDeutschland
  2. 2.Fraunhofer Institute for Structural Durability and System ReliabilityDarmstadtDeutschland
  3. 3.Fachgebiet StrukturmechanikTechnische Universität DarmstadtDarmstadtDeutschland

Personalised recommendations