Advertisement

Prediction of the 2D macro-scale fragmentation of tempered glass using random Voronoi tessellations

  • N. Pourmoghaddam
  • Michael A. Kraus
  • J. Schneider
  • G. Siebert
Conference paper

Zusammenfassung

Thermally tempered glass will fragmentize completely into many pieces, if the equilibrated residual stress state within the glass plate is disturbed sufficiently and if the elastic strain energy in the glass is large enough [1], [2], [3], the fragmentation is the direct consequence of the elastic strain energy that is stored inside the material due to the residual stress state [4],[5]. The fragment size depends on the amount of the stored energy. Small fragments are caused by highly stored strain energy due to the high residual stress state originating from the extremely rapid cooling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1].
    N. Pourmoghaddam und J. Schneider, „Experimental investigation into the fragment size of tempered glass“, Glas. Struct. Eng., Bd. 3, Nr. 2, S. 167–181, 2018.Google Scholar
  2. [2].
    K. Akeyoshi und E. Kanai, „Mechanical Properties of Tempered Glass“, VII int. congr. og Glas., Nr. paper 80, 1965.Google Scholar
  3. [3].
    M. P. Silverman, W. Strange, J. Bower, und L. Ikejimba, „Fragmentation of explosively metastable glass“, Phys. Scr., Bd. 85, Nr. 6, 2012.Google Scholar
  4. [4].
    J. H. Nielsen, „Remaining stress-state and strain-energy in tempered glass fragments“, Glas. Struct. Eng., Bd. 2, Nr. 1, S. 45–56, 2017.Google Scholar
  5. [5].
    J. H. Nielsen und M. Bjarrum, „Deformations and strain energy in fragments of tempered glass: experimental and numerical investigation“, Glas. Struct. Eng., Bd. 2, Nr. 2, S. 133–146, 2017.Google Scholar
  6. [6].
    G. Molnár, M. Ferentzi, Z. Weltsch, G. Szebényi, L. Borbás, und I. Bojtár, „Fragmentation of wedge loaded tempered structural glass“, Glas. Struct. Eng., Bd. 1, Nr. 2, S. 385–394, 2016.Google Scholar
  7. [7].
    N. Pourmoghaddam, M. A. Kraus, J. Schneider, und G. Siebert, „A theoretical method for the prediction of the 2D macro-scale fragmentation of glass - Part I: The Methodology“, Glas. Struct. Eng., Bd. Submitted, 2018.Google Scholar
  8. [8].
    A. . A. . Griffith, „The Phenomena of Rupture and Flow in Solids“, Philos. Trans. R. Soc. London, Bd. 221, Nr. 1921, S. 163–198, 1920.Google Scholar
  9. [9].
    N. Pourmoghaddam, M. A. Kraus, J. Schneider, und G. Siebert, „The geometrical properties of random 2D Voronoi tesselations for the prediction of the tempered glass fracture pattern“, in Engineered Transparency International Conference At Glasstec, 2018Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • N. Pourmoghaddam
    • 1
  • Michael A. Kraus
    • 2
  • J. Schneider
    • 1
  • G. Siebert
    • 2
  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtDeutschland
  2. 2.Institute of Structural EngineeringUniversity of the German Armed ForcesMünchenDeutschland

Personalised recommendations