Advertisement

Investigation and Simulation of Gasoline in a Diesel Fuel Injector for Gasoline Compression Ignition Applications

  • Michael TraverEmail author
  • Yuanjiang Pei
  • Tom Tzanetakis
  • Roberto Torelli
  • Christopher Powell
  • Sibendu Som
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Future demand for middle distillates in the commercial sector is expected to rise in step with increased economic activity in much of the world. Simultaneously, the passenger car fleet will experience various degrees of electrification and demand for gasoline is expected to fall. This divergence in demand will offer an opportunity to commercial vehicle owners if gasoline fuel streams can be burned efficiently in commercial engines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  2. 2.
    US Energy Information Administration, 2016. International Energy Outlook 2016. DOE/EIA-0484 (2016).Google Scholar
  3. 3.
  4. 4.
    World Energy Council, 2012. Global Transport Scenarios 2050. https://www.worldenergy.org/wpcontent/uploads/2012/09/wectransportscenarios2050.pdf.
  5. 5.
    Heywood, John B. Internal Combustion Engine Fundamentals. New York McGraw-Hill, 1988.Google Scholar
  6. 6.
    Manente, V., Johansson, B., and Tunestal, P., 2009, “Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel,” SAE Paper No. 2009-01-0944.Google Scholar
  7. 7.
    Manente, V., Zander, C., Johansson, B., Tunestal, P., and Cannella, W., 2010, “An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion,” SAE Paper No. 2010-01-2198.Google Scholar
  8. 8.
    Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrerr, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, “Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime,” SAE Int. J. Engines, 4(1), pp. 1412–1430.CrossRefGoogle Scholar
  9. 9.
    Kolodziej, C., Kodavasal, J., Ciatti, S., Som, S., Shidore, N., and Delhom, J., 2015, “Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle,” SAE Paper No. 2015-01-0832.Google Scholar
  10. 10.
    Won, H., Peters, N., Pitsch, H., Tait, N., and Kalghatgi, G., 2013, “Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine,” SAE Paper No. 2013-01-2539.Google Scholar
  11. 11.
    Chang, J., Kalghatgi, G., Amer, A., and Viollet, Y., 2012, “Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion,” SAE Paper No. 2012-01-0677.Google Scholar
  12. 12.
    Chang, J., Kalghatgi, G., Amer, A., Adomeit, P., Rohs, H., and Heuser, B., 2013, “Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability With EURO6 Engine-Out NOx Emission,” SAE Int. J. Engines, 6(1), pp. 101–119.CrossRefGoogle Scholar
  13. 13.
    Leermakers, C., Bakker, P., Somers, L., de Goey, L., and Johansson, B. H., 2013, “Commercial Naphtha Blends for Partially Premixed Combustion,” SAE Int. J. Fuels Lubr., 6(1), pp. 199–216.CrossRefGoogle Scholar
  14. 14.
    Sellnau, M., Moore, W., Sinnamon, J., Hoyer, K., Foster, M., and Husted, H., 2015, “GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions,” SAE Int. J. Engines, 8(2), pp. 775–790.CrossRefGoogle Scholar
  15. 15.
    Kolodziej, C., Sellnau, M., Cho, K., and Cleary, D., 2016, “Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels,” SAE Int. J. Engines, 9(2), pp. 979–1001.Google Scholar
  16. 16.
    Zhang, Y., Voice, A., Pei, Y., Traver, M., and Cleary, D., 2018, “Fuel Chemical and Physical Properties and Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine”, ASME J. Energy Resour. Technol., 140(10), p. 102202.CrossRefGoogle Scholar
  17. 17.
    Kalghatgi, Gautam, Fuel/Engine Interactions, SAE International, Warrendale, PA, 2014.CrossRefGoogle Scholar
  18. 18.
    Pei, Y., Torelli, R., Tzanetakis, T., Zhang, Y., Traver, M., Cleary, D. and Som, S. “Modeling the Fuel Spray of a High Reactivity Gasoline Under Heavy-Duty Diesel Engine Conditions”, Proc. of the ASME ICE Division Fall Technical Conference, ICEF2017-3530, 2017.Google Scholar
  19. 19.
    Zhang, Y., Sommers, S., Pei, Y., Kumar, P. et al., “Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine,” SAE Technical Paper 2017-01-0696, 2017.Google Scholar
  20. 20.
    Tang. M., Zhang, J., Menucci, T., Schmidt, H., Lee, S-Y., Naber. J. and Tzanetakis, T., “Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part I: Non-Reacting, Non-Vaporizing Sprays”, ILASS-Americas 2017, Atlanta, GA.Google Scholar
  21. 21.
    Zhang, J., Tang, M., Menucci, T., Schmidt, H., Lee, S-Y., Naber, J. and Tzanetakis, T., “Experimental Investigation of Spray Characteristics of High Reactivity Gasoline and Diesel Fuel Using a Heavy-Duty Single-Hole Injector, Part II: Non-Reacting, Vaporizing Sprays”, ILASS-Americas 2017, Atlanta, GA.Google Scholar
  22. 22.
    Tang, M., Zhang, J., Menucci, T., Schmidt, H., Lee, S-Y., Naber, J., Tzanetakis, T., “Experimental Spray Ignition and Soot Forming Characteristics of High Reactivity Gasoline and Diesel Fuel in a Heavy-Duty Single-Hole Injector,” Proceedings 10th US National Combustion Meeting – Eastern States Section of the Combustion Institute, College Park, MD, April 2017.Google Scholar
  23. 23.
    Voice, A., Tzanetakis, T., and Traver, M, “Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives”, SAE Paper 2017-01-0871, 2017.Google Scholar
  24. 24.
    Tzanetakis, T., Voice, A. and Traver, M., “Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like [21] Fuel”, SAE Paper 2018-01-0270, 2018.Google Scholar
  25. 25.
    Matusik, K.E., Duke, D.J., Kastengren, A.L., Sovis, N., Swantek, A.B., and Powell, C.F. “High-resolution x-ray tomography of Engine Combustion Network diesel injectors”. IJER 2017; 00(0):1-14.Google Scholar
  26. 26.
    J. P. Viera, R. Payri, A. B. Swantek, D. J. Duke, N. Sovis, A. L. Kastengren, C. F. Powell, “Linking instantaneous rate of injection to x-ray needle lift measurements for a direct-acting piezoelectric injector”,. Energy Conversion & Management pp. 350-358, January 2016CrossRefGoogle Scholar
  27. 27.
    Richards, K., Senecal, P., Pomraning, E. (2016). CONVERGE Manual (Version 2.3). Convergent Science Inc., Madison, WI, USA. https://convergecfd.com, accessed 04/17/2018.
  28. 28.
    Bilicki, Z., Kestin, J. (1990). Physical Aspects of the Relaxation Model in Two-Phase Flow. Proceedings of the Royal Society London A, Vol. 428, pp. 379-397.CrossRefGoogle Scholar
  29. 29.
    Torelli, R., Som, S., Pei, Y., Zhang, Y., Voice, A., Traver, M., Cleary, D. (2017) Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels. SAE Technical Paper 2017-01-0853.Google Scholar
  30. 30.
    Torelli, R. Matusik, K., Nelli, K., Kastengren, A., Fezzaa, K., Powell, C., Som, S., Pei, Y., Tzanetakis, T., Zhang, Y., Traver, M., Cleary D. (2018). Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry. SAE Technical Paper 2018-01-0303.Google Scholar
  31. 31.
    Saha, K., Quan, S., Battistoni, M., Som, S., Senecal, P. K., Pomraning, E. (2017). Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems. SAE Technical Paper 2017-01-0834.Google Scholar
  32. 32.
    Kastengren, A., Tilocco, F., Powell, C., Manin, J., Pickett, L. M., Payri, R., Bazyn, T. (2013). Engine Combustion Network (ECN): Measurements of Nozzle Geometry and Hydraulic Behavior. Atomization and Sprays, Vol. 22(12), pp. 1011–1052.Google Scholar
  33. 33.
    Torelli, R., Som, S., Pei, Y., Zhang, Y., Traver, M. (2017). Influence of Fuel Properties on Internal Nozzle Flow Development in a Multi-Hole Diesel Injector. Fuel, Vol. 204, pp. 171-184.Google Scholar
  34. 34.
    Torelli, R., Som, S., Pei, Y., Zhang, Y., Traver, M. (2017). Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions. ILASS Americas, 29th Annual Conf. on Liquid Atomization and Spray Systems, Atlanta, GA.Google Scholar
  35. 35.
    Torelli, R. Matusik, K., Sforzo, B., Kastengren, A., Powell, C., Som, S., Pei, Y., Tzanetakis, Y., Traver, (2018). In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injector Geometry and Gasoline-Like Fuels. 10th International Cavitation Symposium, CAV2018, Baltimore, MD.Google Scholar
  36. 36.
    Torelli, R., Sforzo, B. A., Matusik, K., Kastengren, A., Fezzaa, K., Powell, C., Som, S., Pei, Y., Tzanetakis, T., Zhang, Y., Traver, M., Cleary D. J. (2018). Investigation of Shot-to-Shot Variability during Short Injections. ICLASS 2018, 14th Triennial Int. Conf. on Liquid Atomization and Spray Systems, Chicago, IL.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Michael Traver
    • 1
    Email author
  • Yuanjiang Pei
    • 1
  • Tom Tzanetakis
    • 1
  • Roberto Torelli
    • 1
  • Christopher Powell
    • 1
  • Sibendu Som
    • 1
  1. 1.Aramco Services CompanyNoviUSA

Personalised recommendations