Advertisement

Model-based optimization of multi-hole injector spray targeting for gasoline direct injection

  • Tobias GawlicaEmail author
  • Wolfgang Samenfink
  • Erik Schünemann
  • Thomas Koch
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Gasoline engines with direct injection and turbocharging are an integral part in future powertrain topologies and hence show the potential to yield substantial market share [1]. High-level requirements for upcoming development work are imposed by worldwide exhaust gas emission legislations as well as end customer demands towards the vehicle manufacturer. This implies reductions of gaseous and particulate emissions under on road conditions and the balancing between driving performance, fuel consumption/CO2 and NVH characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1].
    T. Pauer, H. Yilmaz, J. Zumbrägel, W. Wiese, P. Rogler and E. Schünemann, “The New Generation Bosch Gasoline Direct Injection Systems,” in 38. Internationales Wiener Motorensymposium, Vienna, 2017.Google Scholar
  2. [2].
    B. Bork, A. Preusche, F. Weckenmann, G. Lamanna and A. Dreizler, “Measurement of species concentration and estimation of temperature in the wake of evaporating n-heptane droplets at trans-critical conditions,” Proceedings of the Combustion Institute, vol. 36, no. 2, 2017.CrossRefGoogle Scholar
  3. [3].
    C. Arcoumanis and T. Kamimoto, Flow and Combustion in Reciprocating Engines, Springer-Verlag Berlin Heidelberg, 2009.Google Scholar
  4. [4].
    H. Bockhorn, Ed., Soot Formation in Combustion, Springer-Verlag Berlin Heidelberg, 1994.Google Scholar
  5. [5].
    A. Ratzke, Modellierung der Flammenausbreitung und Flammenlöschens im Gasmotor, 2013.Google Scholar
  6. [6].
    A. Loch, Untersuchung der Ursachen für Kohlenwasserstoffemissionen beim Ottomotor mit homogener Selbstzündung (HCCI), 2006.Google Scholar
  7. [7].
    F. Schulz, W. Samenfink, J. Schmidt and F. Beyrau, “Systematic LIF fuel wall film investigation,” Fuel, vol. 172, pp. 284-292, 2016.CrossRefGoogle Scholar
  8. [8].
    B. D. Stojkovic, T. D. Fansler, M. C. Drake and V. Sick, “High-speed imaging of OH* and soot temperature and concentration in a stratified-charge directinjection gasoline engine,” Proceedings of the Combustion Institute, vol. 30, no. 2, January 2005.CrossRefGoogle Scholar
  9. [9].
    J. Hadler, C. Lensch-Franzen, M. Gohl and T. Mink, “Emission Reduction A Solution of Lubricant Composition, Calibration and Mechanical Development,” MTZ worldwide, vol. 76, no. 9, pp. 30-33, August 2015.CrossRefGoogle Scholar
  10. [10].
    M. Gunkel , M. Frensch, A. Robota and R. Gelhausen, “Inner Engine Emissions Reduction The Interrelationship between Particle Emissions and Oil Consumption,” MTZ worldwide, vol. 79, no. 7-8, pp. 44-49, July 2018.CrossRefGoogle Scholar
  11. [11].
    M. Kassai, T. Shiraishi and T. Noda , “Fundamental Mechanism Analysis on the Underlying Processes of LSPI Using Experimental and Modeling Approaches,” in 5th International Conference on Knocking in Gasoline Engines, Berlin, 2017.Google Scholar
  12. [12].
    D. Weber and P. Leick , “Structure and Velocity Field of Individual Plumes of Flashing Gasoline Direct Injection Sprays,” in 26th Annual Conference on Liquid Atomization and Spray Systems, Bremen, 2014.Google Scholar
  13. [13].
    A. Eichhorn, Systematische Bewertung von 5 Brennverfahren an einem aufgeladenen 2-Zylinder-Ottomotor, 2013.Google Scholar
  14. [14].
    [M. Buschbeck, Laser diagnostics of cycle-to-cycle variations in an optically accessible engine, 2013.Google Scholar
  15. [15].
    T. Gawlica, M. Lippisch, W. Samenfink, E. Schünemann und T. Koch , „Untersuchung zum Einfluss des Spray Targetings von Mehrloch-Injektoren für Benzin-Direkteinspritzung auf das Kennfeldverhalten von Spray und Brennverfahren,“ in 10. Tagung Diesel- und Benzindirekteinspritzung 2016, Berlin, 2017.Google Scholar
  16. [16].
    G. Lamanna, H. Kamoun, B. Weigand and J. Steelant, “Towards a unified treatment of fully flashing sprays,” International Journal of Multiphase Flow, vol. 58, pp. 168-184, 2014.CrossRefGoogle Scholar
  17. [17].
    P. Leick , M. Schmitt, T. Kubis, K. G. Stapf and T. Gawlica, “Impact of flashboiling on gasoline sprays: From Fundamental physical insights to enginemeasured PN emissions,” in 13th International AVL Symposium on Propulsion Diagnostics, Baden-Baden, 2018.Google Scholar
  18. [18].
    T. Koch, D. Notheis, M. Bertsch and A. Velji, “Soot formation inside DISI Engines at high loads,” in JSAE Annual Congress (Spring), Yokohama, 2018.Google Scholar
  19. [19].
    N. Müller, „Simulation of Ignition and Combustion in a Spark-Ignited Gasoline Engine with AKTIM and ECFM,“ in AVL Advanced Simulation Technologies International User Conference, Graz, 2011.Google Scholar
  20. [20].
    F. Weberbauer, M. Rauscher, A. Kulzer, M. Knopf und M. Bargende, „Allgemein gültige Verlustteilung für neue Brennverfahren,“ MTZ, Bd. 66, Nr. 2, pp. 120-124, 2005.Google Scholar
  21. [21].
    A. Kulzer, D. Lejsek, A. Kiefer and A. Hettinger, “Pressure Trace Analysis Methods to Analyze Combustion Features and Cyclic Variability of Different Gasoline Combustion Concepts,” in SAE World Congress, Detroit, 2009.Google Scholar
  22. [22].
    A. Schneider, Flammenkernbildung durch Zündfunken bei Ladungsverdünnung, 2017.Google Scholar
  23. [23].
    T. Gutjahr and T. Kruse, “Advanced modeling and optimization for virtual calibration of internal combustion engines,” in NDIA Ground Vehicle Systems Engineering and Technology Symposium, Novi, Michigan, 2017.Google Scholar
  24. [24].
    F. Steimle, A. Kulzer, H. Richter, D. Schwarzenthal and C. Romberg, “Systematic Analysis and Particle Emission Reduction of Homogeneous Direct Injection SI Engines,” in SAE World Congress, 2013.Google Scholar
  25. [25].
    J. N. Geiler, R. Grzeszik, S. Quaing, A. Manz and S. A. Kaiser, “Development of laser-induced fluorescence to quantify in-cylinder fuel wall films,” International Journal of Engine Research, vol. 19, no. 1, 2017.CrossRefGoogle Scholar
  26. [26].
    P. Leick, B. Bork and J. N. Geiler, “Experimental characterization of tip wetting in gasoline DI injectors,” in 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, 2018.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Tobias Gawlica
    • 1
    Email author
  • Wolfgang Samenfink
    • 2
  • Erik Schünemann
    • 2
  • Thomas Koch
    • 3
  1. 1.Bosch Corp. JapanYokohama-Shi-/KanagawaJapan
  2. 2.Robert Bosch GmbHStuttgartDeutschland
  3. 3.IFKM, KIT KarlsruheKarlsruheDeutschland

Personalised recommendations