Advertisement

Lubricant Technology for Hybrid Electric Vehicle Automatic Transmissions

  • Michael Gahagan
  • Christian Einertshofer
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Of the three main automatic transmission types, the stepped automatic (AT), the continuously variable transmission (CVT) and the dual clutch transmission (DCT), the high mechanical efficiency of DCT technology [1] makes it a preferred technology for many hybrid vehicles. The mechanical efficiency of the DCT means it saves on both battery and engine demand to drive the vehicle. It is selected for hybrids because it provides high energy transfer efficiency, which delivers vehicle fuel economy performance improvements. The DCT is efficient in terms of mechanical efficiency as there are no torque converter losses [2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1. Matthes, B. “Dual Clutch Transmissions – Lessons Learned and Future Potential” SAE Technical Paper 2005-01-1021, 2005.Google Scholar
  2. 2. Chamberlin, B., Gold. E., Nitsche. J, “HEV P2 Module Concepts for Different Transmission Architectures”. CTI Mag. The automotive TM, HEV and EV Drives magazine by CTI. Dec. 2016.Google Scholar
  3. 3. Tipton, C., Jao, T-C., Newcomb, T. “Passenger Car Automatic Transmissions” 4th Ed, 2012, Ch. 12.Google Scholar
  4. 4. Blessing, C. “Modular hybrid transmission kit for GETRAG’s new PowerShift generation. 14th International CTI Symposium, Automotive Transmissions, HEV and EV drives, 8th December 2015.Google Scholar
  5. 5. Wadhwa, C.L. “High Voltage Engineering” p. 18, New Age International. 1 Jan 2007.Google Scholar
  6. 6. McFadden, C., Hughes, K., Raser, L., and Newcomb, T., “Electrical Conductivity of New and Used Automatic Transmission Fluids,” SAE Int. J. Fuels Lubr. 9(3):519-526, 2016,  https://doi.org/10.4271/2016-01-2205.
  7. 7. Abedian, B., “Dangers of Electrostatic Discharge in Engine Oil” Machinery Lubrication 2015.Google Scholar
  8. 8. Carey, A.A. “The Dielectric Constant of Lubrication Oils” Computational Systems Inc. Knoxville TN. p. 4. 1998 Defense Technical Information Center. US DoD.Google Scholar
  9. 9. “DupontTM Kapton® Summary of Properties”. Technical Data Report from Dupont.Google Scholar
  10. 10. Erdman, H.G., “Electrical Insulating Oils” ASTM publication 1992. ISBN: 0-8031-1179-7.Google Scholar
  11. 12. DuPont, Nomex® Technical Information Sheet, 2017.Google Scholar
  12. 13. Ildstad E., Chalise S.R., “AC Voltage Endurance of Polyimide Insulated Magnet Wire” 2009 IEEE 978-1-4244-4559-2/09.Google Scholar
  13. 14. Hayakawa, N., Hitoshi, O., “Partial Discharge Characteristics of Inverter-fed Motor Coil Samples under AC and Surge Voltage Conditions” DEIS Feature Article. January/February 2005 – Vol. 21, No. 1.Google Scholar
  14. 15. Kershaw, I. “Long Term Trends in Vehicle Development” ICIS 21st World Base Oils & Lubricants Conference. London 16th Feb. 2017 p27.Google Scholar
  15. 16. Tipler, P.A. “College Physics” ISBN-10: 0879012684Google Scholar
  16. 17. Muto, D., Oya, M., Tsuneo, Aoi., et al. “A Study on Partial Discharge Phenomena of Winding Wires” Polymer Materials Technology Review, No. 45, 2014.Google Scholar
  17. 18. Stone, G.C., Boulter, E.A., Culbert, I, et al. “Electrical Insulation for Rotating Machines” Ch. I. IEEE 2004Google Scholar
  18. 19. Crolla D., Encyclopedia of Automotive Engineering, Vol.2 Part 3, 2015. ISBN 978-0-470-97402-5.Google Scholar
  19. 20. Maher, B., “Ultracapacitors and the Hybrid Electric Vehicle” http://www.altenergymag.com/article/2005/02/ultracapacitors-and-the-hybridelectric-vehicle.
  20. 21. Lanham, C. “Understanding the tests that are recommended for electric motor predictive maintenance”. New York: Baker Instrument Company, Energy publication (2002).Google Scholar
  21. 22. Hitachi Metals Ltd., Catalog No. KVE200A.Google Scholar
  22. 23. Stone, G.C., Boulter, E.A., Culbert, I, et al., “Electrical Insulation for Rotating Machines-Design, Evaluation, Aging, Testing, and Repair”. 2004. ISBN 0-471-44506-1.Google Scholar
  23. 24. Cockrill, N.S., “The Infrared Spectroscopic Study of the Effects of Solvent Exposure on Polyimide Films”. Thesis 2009, Ball State University, Indiana USA 25. ISO 13226:2011(E).Google Scholar
  24. 26. Mortier, R.M., Fox, M.F., Orszulik, S. (Eds). “Chemistry and Technology of Lubricants” ISBN 978-1-4020-8662-5.Google Scholar
  25. 27. Gahagan, M.P., Hunt, G.J. “New insights on the Impact of Automatic Transmission Fluid (ATF) Additives on Corrosion of Copper-The Application of a Wire Electrical Resistance Method” IJAE, 7 (2016) p115-120.Google Scholar
  26. 28. Hunt, G.J., Gahagan, M.P., Peplow, M.A. “Wire resistance method for measuring the corrosion of copper by lubricating fluids”. Lubrication Science, 2016.  https://doi.org/10.1002/ls.1368
  27. 29. Hunt, G.J., “New Perspectives on the Temperature Dependence of Lubricant Additives on Copper Corrosion,” SAE Int. J. Fuels Lubr. 10(2):2017,  https://doi.org/10.4271/2017-01-0891.
  28. 30. Richardson, R.C., O’Connor, B.M., Gahagan, M.P. “Balancing Extended Oil Drain with Extended Equipment Life” SAE Technical Paper 961110, 1996.Google Scholar
  29. 31. Lam, R., “Next Generation Friction Products and Technologies” CTI Symposium, Shanghai. Innovative Automotive Transmissions & Electric Drives. 10-12 September, 2012.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Michael Gahagan
    • 1
  • Christian Einertshofer
    • 1
  1. 1.Lubrizol Ltd.HazelwoodGroßbritannien

Personalised recommendations