Advertisement

Modellierung der Zweiphasenströmung

  • Franz Joos
  • Niklas Neupert
Chapter

Zusammenfassung

Niederdruckturbinen, wie auch die Hochdruckturbinen von Kernkraftwerken mit Siedewasserreaktor, entspannen in der Regel bis in das Nassdampfgebiet. Die hierbei entstehende Dampfnässe führt einerseits zu Wirkungsgradverlusten und andererseits zu Erosionsproblemen. Nahezu die Hälfte der Verluste einer Niederdruckturbine entsteht aufgrund der Kondensation. Die Ausscheidung von Wasser aus der gasförmigen Phase erfolgt in der Regel entweder an kühleren Oberflächen oder im Fluid durch Tropfenbildung. Prinzipiell stehen in geführten Strömungen die Schaufeloberflächen oder Gehäusewände zur Kondensation zur Verfügung. Aufgrund der geringen Temperaturdifferenzen unter stationären Betriebsbedingungen ist der Wärmeübergang allerdings gering, so dass von einer zur Berandung adiabaten Strömung ausgegangen werden kann. Somit ist die Kondensation an den strömungsführenden, festen Oberflächen von keiner oder nur von untergeordneter Bedeutung. Stets dominiert die Kondensation im Fluid in Form von Tropfen.

Eine optimierte Auslegung der Niederdruckturbine kann nur unter Berücksichtigung der aus unterkühlten Bedingungen kondensierten Tröpfchen und deren Interaktion mit der Beschaufelung erfolgen.

Literatur

  1. AHM2009a.
    Ahmad, M., Casey, M., Sürken, N.: Experimental assessment of droplet impact erosion resistance of steam turbine blade materials. Wear 267, 1605–1618 (2009)CrossRefGoogle Scholar
  2. AQU2006.
    Aquelet, N., Souli, M., Olovsson, L.: Euler-Lagrange coupling with damping effects: Application to slamming problems. Comput. Methods. Appl. Mech. Eng. 195, 110–132 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. ASH2011.
    Ashgriz, N.: Handbook of Atomization and Sprays – Theory and Applications, 1. Aufl. Springer, ■ (2011)CrossRefGoogle Scholar
  4. ATH2011.
    Atheya, S.; Mistry, H.; Moraga, F.; Dey, S.: Numerical Sensitivity study on nucleation of droplets in steam turbines. Proceedings of ASME power, Denver, Co. POWER2011-55269 (2011).Google Scholar
  5. BAK2005a.
    Bakhtar, F., White, A.J., Mashmoushy, H.: Theoretical Treatments of Two-dimensional Two-Phase Flows of Steam and Comparison with Cascade Measurements. Proc. Instn Mech. Engrs Part C: J. Mech. Eng. Sci 219, 1335–1335 (2005)Google Scholar
  6. BAK2005b.
    Bakhtar, F., Young, J.B., White, A.J., Simpson, D.A.: Classical Nucleation Theory and its Application to Condensing Steam Flow Calculations. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 219, 1315–1333 (2005)CrossRefGoogle Scholar
  7. BAU1912.
    Baumann, K.: Recent Developments in Steam Turbine Practice. J. Instn. Elec. Engnrs. 48, 768–842 (1912)Google Scholar
  8. BAU1921.
    Baumann, K.: Some recent developments in large steam turbine practice. Eng 111, 435 (1921)Google Scholar
  9. BEC1935.
    Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24, 719–752 (1935)zbMATHCrossRefGoogle Scholar
  10. BEL1999.
    Bellows, J.C.: Chemical Processes in Steam Turbines. Power Plant Chem. ■(1), 26–30 (1999)Google Scholar
  11. BEN1992.
    Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods. Appl. Mech. Eng. 2–3(99), 235–394 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. BLA2006.
    Blake, T.D.: The physics of moving wetting lines. J. Colloid Interface Sci. 299(1), 1–13 (2006)MathSciNetCrossRefGoogle Scholar
  13. BOW1961.
    Boden, F.P., Brunton, J.H.: The deformation of solids by liquid impact at supersonic speeds. Proc. R. Soc. Lond. 263(1315), 433–450 (1961)CrossRefGoogle Scholar
  14. CAM2007.
    Campos-Amezcua, A., Gallegos-Muñoz, A., Romero, C.A., Mazur-Czerwiec, Z., Campos-Amezcua, R.: Numerical investigation of the solid particle erosion rate in a steam turbine nozzle. Appl. Therm. Eng. 27, 2394–2403 (2007)CrossRefGoogle Scholar
  15. CHA2004.
    Charbonnier, D.: D’eveloppement d’un modèle de tensions d’eterministes instationnaires adapté à la simulation de turbomachines multiétagées. PhD Thesis (2004) École Centrale de Lyon, France.Google Scholar
  16. COG1995.
    Coghe, A.; Cossali, G.; Marengo, M.: A First Study about Single Drop Impingement on Thin Liquid Film in a Low Laplace Number Range. Proc. 11th European Conf. of ICLASS Europe (1995).Google Scholar
  17. COO1928.
    Cook, S.S.: Erosion by Water-Hammer. Proc. R. Soc. Lond. Ser. A 119(783), 481–488 (1928)CrossRefGoogle Scholar
  18. COS1997.
    Cossali, G.E.; Coghe, A.; Marengo, M.: The impact of a single drop on a wettend surface. Experiments in Fluids (1999), S. 22.Google Scholar
  19. CRA2004.
    Crane, R.I.: Droplet deposition in steam turbines. Proc Imeche Part C: J. Mech. Engrg. Sci. 218(8), 859–870 (2004)CrossRefGoogle Scholar
  20. CUP2005.
    Di Vernieri Cuppari, M.G., Souza, R.M., Sinatora, A.: Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys. Wear 258(596), 603 (2005)Google Scholar
  21. DIM1997.
    Dimitrakopoulos, P., Higdon, J.J.L.: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J. Fluid Mech. 336, 351–378 (1997)zbMATHCrossRefGoogle Scholar
  22. DRA2005.
    Drabek, T., Böhm, H.J.: Micromechanical finite element analysis of metal matrix composites using nonlocal ductile failuremodels. Comp. Material Sci. 37, 29–35 (2005)CrossRefGoogle Scholar
  23. DUC2008.
    Dumouchel, C.: On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45(3), 371–422 (2008)CrossRefGoogle Scholar
  24. ECK2013.
    Eckel, G.; Rachner, M.; Le Clerq, M.; Aigner, M.: Semi-empirical primary atomization models for transient lagrangian spray simulation. In: Proceedings 8th International Conference on Multiphase Flow (ICMF), May 26–31, Jeju, Korea, (2013).Google Scholar
  25. EIS2011.
    Eisfeld, T.: Experimentelle Untersuchung der Aerodynamik einer mit Wassertropfen beladenen Luftströmung in einem ebenen Verdichtungsgitter. Dissertation. Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg (2011).Google Scholar
  26. ELG2001.
    El-Genk, M.S., Saber, H.H.: Minimum thickness of a flowing down liquid film on a vertical surface. Int. J. Heat Mass Transf. 44, 2809–2825 (2001)zbMATHCrossRefGoogle Scholar
  27. FAD1988.
    Faddeyev, I.P., Khayiva, S.L., Mosenzhnik, B.Y.: Oblique Impingement of a Spherical Liquid Droplet on a Solid Wall. Fluid Mech. – Sov. Res. 3, 17 (1988)zbMATHGoogle Scholar
  28. FEN2012.
    Fendler, Y.; Dorey, J.-M.; Stanciu, M.; Lance, M.; Leonard, O.: Developments for Modeling of Droplet Deposition and Liquid Film Flow in a Throughflow Code for Steam Turbines. Proceedings of ASME Turbo Expo, GT2012-68968, June 11–12, Copenhagen, Denmark (2012).Google Scholar
  29. FIE1989.
    Field, J.E., Dear, J.P., Orgen, J.E.: The effects of target compliance on liquid drop impact. J. Appl. Phys. 65(2), 533–540 (1989)CrossRefGoogle Scholar
  30. FOU1998.
    Foucart, H.: Modélisation tridimensionelle des films liquids pariétaux dans les moteurs à combustion interne. PhD Thesis, Faculté des sciences de l’Université de Rouen, France, 1998.Google Scholar
  31. FRE1946.
    Frenkel, J.: Kinetic Theory of Liquids. Oxford University Press, New York (1946)zbMATHGoogle Scholar
  32. FRE1955.
    Frenkel, J.: Kinetic Theory of Liquids. Dover, ■ (1955)zbMATHGoogle Scholar
  33. GAR1963.
    Gardner, G.C.: Event Leading to Erosion in the Steam Turbine. Proc Imeche 178(1/23), 593–623 (1964)Google Scholar
  34. GEP2010.
    Gepperth, S.; Guildenbrecher, D.; Koch, R.; Bauer, H.-J.: Pre-filming primary atomization: Experiments and modeling. ILASS-Europe, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Tschechien, (2010).Google Scholar
  35. GEP2013.
    Gepperth, S.; Koch, R.; Bauer, H.-J.: Analysis and comparison of primary droplet characteristics in the near field of a prefilming airblast atomizer. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94033, June 3–7, San Antonio, Texas, USA, (2013).Google Scholar
  36. GER2002.
    Gerber, A.G.: Two-Phase Eulerian/Lagrangian Model for Nucleating Steam. Flow. J. Fluids Eng. 124, 465–475 (2002)CrossRefGoogle Scholar
  37. GER2004.
    Gerber, A.G., Kermani, M.J.: A Pressure Based Eulerian-Eulerian Multi-phase Model for Nonequilibrium Condensation in Transonic Steam Flow. Int. J. Heat. Mass. Transf. 47, 2217–2231 (2004)zbMATHCrossRefGoogle Scholar
  38. GER2007.
    Gerber, A.G., Sigg, R., Völker, L., Casey, M.V., Stürken, N.: Predictions of non-equilibrium phase transition in a model low pressure steam turbine. Proc. Inst. Mech. Eng. Part A: J. Power Energy 221, 825–835 (2007)CrossRefGoogle Scholar
  39. GER2008.
    Gerber, A.G.: Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics. J. Fluids Eng. 130, 031402-1–031402-11 (2008)CrossRefGoogle Scholar
  40. GOM2009.
    Gomaa, H., Weigand, B., Haas, M., Munz, C.D.: Direct numerical Simulation (DNS) on the influence of grid refinement for the process of splashing. High Performance Computing in Science and Engineering, Bd. 08. (2009)Google Scholar
  41. GUH1997.
    Guha, A.: A unified eulerian theory of turbulent deposition to smooth and rough surfaces. J. Aerosol Sci. 28, 1517–1537 (1997)CrossRefGoogle Scholar
  42. GYA1962.
    Gyarmathy, G.: Bases of a theory for wet steam turbines. PhD Thesis 1962 Federal Technical University of Zürich, Switzerland, 1962.Google Scholar
  43. GYA1963.
    Gyarmathi, G.: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitstropfen in einer übersättigten Atmosphäre. Zeitschrift Für Angew. Math. Phys. 14, 280–293 (1963)CrossRefGoogle Scholar
  44. GYA1976.
    Gyarmathi, G.: Condensation in flowing steam. In: Moore, M.J., Sieverding, C.H. (Hrsg.) Two-Phase Steam Flow in Turbines and Separators, S. 127–189. Hemisphere, London (1976)Google Scholar
  45. HAL2002.
    Haller, K.K., Ventikos, Y., Poulikakos, D.: Computational study of highspeed liquid droplet impact. J. Appl. Phys. 92(5), 2821–2828 (2002)CrossRefGoogle Scholar
  46. HAM1975.
    Hammitt, F.; Hwang, J.; Kim, W.: Liquid film thickness measurements in University of Michigan wet steam tunnel. Tech. rep., University of Michigan, Michigan, USA, December, UMICH 012449-23-1, (1975).Google Scholar
  47. HAM1981.
    Hammitt, F., Krzeczkowski, S., Krzyzanowski, J.: Liquid film and droplet stability consideration as applied to wet steam flow. Forschung im Ingenieurwesen, Bd. 47. (1981)Google Scholar
  48. HAN1966.
    Hancox, N.L., Brunton, J.H.: The Erosion of Solids by the Repeated Impact of Liquid Drops. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci 260(1110), 121–139 (1966)Google Scholar
  49. HAN2012.
    Han, Y.; Xie, Y.; Zhang, D.: Numerical Study on high-speed Impact between a water Droplet and a deformable solid Surface. Proceedings of ASME Turbo Expo 2012, GT2012-6970, June 11–15, Copenhagen, Denmark, (2012).Google Scholar
  50. HEY1968.
    Heymann, F.J.: On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact. J. Basic Eng. 90, 400–402 (1968)CrossRefGoogle Scholar
  51. HEY1969.
    Heymann, F.J.: High speed impact between a liquid drop and a solid surface. J. Appl. Phys. 40(13), 5113–5122 (1969)CrossRefGoogle Scholar
  52. HEY1992.
    Heymann, F.J.: Liquid Impingment Erosion. ASM Handbook 18, (1992), pp. 221–231.Google Scholar
  53. HOL2008.
    Holmes, D.G.: Mixing planes revisited: A steady state mixing plane approach designed to combine high levels of conversation and robustness. Proceedings of ASME turbo expo 2008, GT2008-51296, Berlin Germany, (2008).Google Scholar
  54. HSI1992.
    Hsiang, L.P., Faeth, G.M.: Near-Limit Drop Deformation and Secondary Breakup. Int. J. Multiph. Flow 18(5), 635–652 (1992)zbMATHCrossRefGoogle Scholar
  55. HSI1995.
    Hsiang, L.P., Faeth, G.M.: Drop deformation and break up due to shok wave and steady disturbances. Int. J. Multiph. Flow 21(4), 545–560 (1995)zbMATHCrossRefGoogle Scholar
  56. IHN1977.
    Ihnatowicz, E.; Gumkowski, S.; Mikielewicz, J.: Experimental study of evaporation and breakdown of thin liquid films driven by shear stresses, in: ASME paper No. 77-WA/HT-7, (1977).Google Scholar
  57. ISH1995.
    Ishizaka, K., Ikohagi, T., Daiguji, H.: A High-Resolution Finite Difference Scheme for Supersonic Wet-Stream Flows. Proc. 6th Int. Symp. Comput. Fluid Dyn. 1, 479–484 (1995)Google Scholar
  58. KAL2006.
    Kalikmanov, V.: Mean-field kinetic nucleation theory. J. Chem. Phys. 124, 124505–124510 (2006)CrossRefGoogle Scholar
  59. KAW2011.
    Kawagishi, H., Onoda, A., Shibukawa, N., Niiseki, Y.: Development of Moisture Loss Models in Steam Turbines. JSME B 77(775), 882–893 (2011)CrossRefGoogle Scholar
  60. KOL2012.
    Kolovratník, M.; Hruby, J., Ždímal, V.; Bartoš, O.; Jiříček, I.; Moravec, P.; Zíková, N.: Measurements of heterogeneous particles in superheated steam turbines. Baumann centenary conference. Paper N. BCC-2012-11, Cambridge UK, (2012).Google Scholar
  61. KOL2014.
    Kolovratník, M., Hruby, J., Ždímal, V., Bartoš, O., Jiříček, I., Moravec, P., Zíková, N.: Nano particles found in superheated steam: a quantitative analysis of possible heterogeneous condensation nuclei. Proc. Inst. Mech. Eng. Part A: J. Power Energy 228, 186–193 (2014)CrossRefGoogle Scholar
  62. LEE2003.
    Lee, B., Riu, K., Liu, G.R., Lam, K.Y.: Development of a Water Droplet Erosion Model for Large Steam Turbine Blades. KSME Int. J. 17(1), 114–121 (2003)CrossRefGoogle Scholar
  63. LEF1989.
    Lefebvre, A.H.: Atomisation and Sprays. Combustion, 1. Aufl. Taylor & Francis, ■ (1989)Google Scholar
  64. LES1981.
    Lesser, M.B.: Analytic Solution of Liquid-Drop Impact Problems. Proc. R. Soc. Lond. Ser. A 377(1770), 289–308 (1981)MathSciNetCrossRefGoogle Scholar
  65. LES1983.
    Lesser, M.B., Field, J.E.: The impact of compressible liquids. Ann. Rev. Fluid Mech 15, 97–122 (1983)CrossRefGoogle Scholar
  66. LIU2002.
    Liu, M., Liu, G.R., Lam, K.Y.: Investigations into water mitigation using a meshless particle method. Shock Waves 12, 181–195 (2002)CrossRefGoogle Scholar
  67. MAQ2009.
    Ma, Q.-F., Hu, D.-P., Jiang, J.-Z., Qiu, Z.-H.: A turbulent Eulerian multifluid model for homogeneous nucleation of water vapour in transonic flow. Int. J. Comput. Fluid Dyn. 23(3), 221–231 (2009)zbMATHCrossRefGoogle Scholar
  68. MAN2010.
    Mani, M., Mandre, S., Brennen, M.: Events Before Droplet Splashing on a Solid Surface. J. Fluid. Mech. 647, 163–185 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  69. MAR2009.
    Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 498, 73–111 (2004)zbMATHCrossRefGoogle Scholar
  70. MEI2006.
    Mei, Y., Guha, A.: Modification of the upwind schemes for the computation of condensing twophase flows. Proc. Inst. Mech. Engrs. Part A: J. Power Energy 220(7), 809–814 (2006)CrossRefGoogle Scholar
  71. MEY1994.
    Meyers, M.A.: Dynamic behavior of materials. John Wiley & Sons, New York (1994)zbMATHCrossRefGoogle Scholar
  72. MIY2012.
    Miyake, S.; Sasao, Y.; Yamamoto, S.; Tabate, S.; Miyawaki, T.; Ooyama, H.: Simulation of unsteady 3-D wet-stream Flows through Three-Stage Stator-Rotor Blade Rows with Equilibrium and Nonequilibrium Condensations. Proceedings of ASME Turbo Expo 2012, GT2012-68828, June 11–12, Copenhagen, Denmark, (2012).Google Scholar
  73. MOO1968.
    Moore, M.J., Langford, R.W., Tipping, J.C.: Research at C.E.R.L on turbine blade erosion. Proc Imeche Conf. Wet Steam 182,, 61–68 (1968)Google Scholar
  74. MOO1973.
    Moore, M.J.; Walters, P.T.; Crane, R.I.; Davidson, B.J.: Predicting the fog-drop size in wet-steam turbines. Inst. of Mechanical Engineers, Wet Steam 4 Conf., Paper C37/73, University of Warwick, UK, (1973).Google Scholar
  75. MOR1972.
    Morsi, S.A., Alexander, A.J.: An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Dyn. 55(2), 193–208 (1972)zbMATHGoogle Scholar
  76. MOR2012a.
    Moraga, F.J.; Vysohlid, M.; Gerber, A.; Smelova, N.; Atheya, S.; Kanakala, V.: CFD Predictions of efficiency for non-equilibrium steam 2D cascades. Proceedings of ASME Turbo Expo 2012, GT2012-68368, July 11–15, Copenhagen, Denmark, (2012).Google Scholar
  77. MOR2012b.
    Moraga, F.J.; Vyshohlid, M.; Smelova, N.; Mistry, H.; Athey, S.; Kanakala, V.: A Flux-Conversation Mixing Plane Algorithm for Multiphase Non-Equilibrium Stream Models. Proceedings of ASME Turbo Expo 2012, GT2012-68660, July 11–15, Copenhagen, Denmark, (2012).Google Scholar
  78. MOR2013.
    Moraga, F.J.; Wang, L.; Ren, W.-M.: Numerical Sensitivity Study and Calibration of Non-Equilibrium Wet Steam Model. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94628, June 3–7, San Antonio, Texas, USA, (2013).Google Scholar
  79. MUN1996.
    Mundo, C.: Zur Sekundärzerstäubung newtonscher Fluide an Oberflächen. Dissertation, Universität Erlangen-Nürberg, 1996.Google Scholar
  80. NIC1972.
    Nicholls, J.: Stream and Droplet Breakup by Shock Waves. Harrje, D.T.; Reardon, F.H. (Eds.), NASA SP-194, 1972.Google Scholar
  81. NIK2009.
    Nikkhahi, B., Shams, M., Ziabasharhagh, M.: A numerical investigation of two-phase steam flow around a 2-D turbine’s rotor tip. Int. Commun. Heat Mass Transf. 36(6), 632–639 (2009)CrossRefGoogle Scholar
  82. OHN1936.
    Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift für angewandte Mathematik und Mechanik 16, (1936), Nr. 6, S. 355–358.Google Scholar
  83. PAT2013.
    Patel, Y.; Patel, G.; Turunen-Saaresti, T.: The Effect of Turbulence and Real Gas Models on the Two Phase Spontaneously Condensing Flows in Nozzle. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94778, June 3–7, San Antonio, Texas, USA, (2013).Google Scholar
  84. PET2011.
    Petr, V.; Kolovratnik, M.: Classical nucleation theory as an adequatemodel in predicting related wet steam effects in LP steam turbines. In: 9th European Conference on Turbomachinery, (2011).Google Scholar
  85. PIL1987.
    Pilch, M., Erdmann, C.A.: Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop. Int. J. Multiph. Flow 13(6), 741–757 (1987)CrossRefGoogle Scholar
  86. PUT2012.
    van Putten, D.S.; Sidin, R.S.R.; Hagemeijer, R.: Reduced models for the cluster size distribution in isothermal single component condensation. Baumann centenary conference, Paper BCC-2012-05, September, Cambridge, UK, (2012).Google Scholar
  87. RAY1878.
    Rayleigh, L.: On the stability of jets. Proc. Lond. Math. Soc. 10(1), 4–13 (1878)MathSciNetzbMATHCrossRefGoogle Scholar
  88. REI1987.
    Reitz, R.D.: Modeling Atomization Processes in High-Pressure Vaporizing Sprays. At. Spray Technol. 3, 309–337 (1987)Google Scholar
  89. REI1993.
    Rein, M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12(2), 61–93 (1993)CrossRefGoogle Scholar
  90. REI2008.
    Rein, M., Delphlanque, J.-P.: The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201(1), 105–118 (2008)zbMATHCrossRefGoogle Scholar
  91. RIO2002.
    Rioboo, R., Marengo, M., Tropea, C.: Time evolution of liquid drop impact onto solid dry surfaces. Exp. Fluids 33(1), 112–124 (2002)CrossRefGoogle Scholar
  92. ROC1979.
    Rochester, M.C., Brunton, J.H.: Pressure distribution during drop impact. In: Field, J.E. (Hrsg.) On erosion by liquid and solid impact Proc. 5th Int. Conf. S. 6.1–6.7. Cavendish laboratory, Camridige (1979)Google Scholar
  93. ROI2006.
    Roisman, I.V., Horvat, K., Tropea, C.: Spray impact: Rim transverse in stability initiating fingering and splash and description of a secondary spray. Phys. Fluids 18(10), 102--104 (2006)zbMATHCrossRefGoogle Scholar
  94. SAB2004.
    Saber, H.H., El-Genk, M.S.: On the breakup of a thin liquid film subject to interfacial shear. J. Fluid Mech. 500, 113–133 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  95. SAM2008.
    Samal, M.K., Seidenfuss, M., Roos, E., Dutta, B.K., Kushawa, H.S.: Finite element formulation of a new nonlocal damage model. Finite Elem. Analysis Des. 6–7(44), 358–371 (2008)CrossRefGoogle Scholar
  96. SAS2013.
    Sasao, Y.; Miyake, S.; Okazaki, K.; Yamamoto, S.: Eulerian-Langrangian Numerical Simulation of wet Steam Flow through multi-stage Turbine. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-95945, June 3–7, San Antonio, Texas, USA, (2013).Google Scholar
  97. SCH1968.
    Schlichting, H.: Boundary Layer Theory. Springer, Berlin, Germany (1968)zbMATHGoogle Scholar
  98. SCH1999.
    Schleizer, A.D., Bonnecaze, R.T.: Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J. Fluid Mech. 383, 29–54 (1999)zbMATHCrossRefGoogle Scholar
  99. SCH2005.
    Scheider, I.; Schödel, I.M.; Schönfeld, W.; Brocks, W.: Modelling Crack Extension in Biaxially Loaded Panels. In: Carpinteri, A. (ed.) 11th International Conference on Fracture, (2005).Google Scholar
  100. SEN2002.
    Senoo, S., Shikano, Y.: Two-Dimensional Analysis for Non-Equilibrium Homogeneously Condensing Flows through Steam Turbine Cascade. Jsme Int. J. 45(4), 865–871 (2002)CrossRefGoogle Scholar
  101. SIM2005.
    Simpson, D.A., White, A.J.: Viscous and unsteady flow calculation of condensing steam in nozzles. Int. J. Heat Fluid Flow 26(1), 71–79 (2005)CrossRefGoogle Scholar
  102. SIM2007.
    Simon, J.-F.: Contribution to throughflowmodelling for axial flow turbomachines. PhD Thesis, University of Liège, 2007.Google Scholar
  103. SLA2003.
    Slater, S., Leeming, A., Young, J.: Particle deposition from two-dimensional turbulent gas flows. Int. J. Multiph. Flow 29(5), 721–750 (2003)zbMATHCrossRefGoogle Scholar
  104. SMI1966.
    Smith, A.: The influence of moisture on the efficiency of a one-third scale model low pressure steam turbine. In: Symposium on wet steam, London, (1966), pp. 39–49.Google Scholar
  105. SNO1981.
    Snoeck, J.: Calculation of Mixed Flows with Condensation in One Dimensional Nozzle, Aero-Thermodynamics of Steam Turbines. 10 Copyright © 2013 by ASME, ASME H 11-18, (1981).Google Scholar
  106. SPR1976.
    Springer, G.S.: Erosion by Liquid Impact. Scripta Publishing Co, ■ (1976)Google Scholar
  107. STA2005.
    Stastny, M.; Sejna, M.: The Effect of Expansion Rate on the Steam Flow with Hetero-Homogeneous Condensation in Nozzles. Proc. Intsn. Mech. Engrs. 219, Part A: J. Power and Energy, (2005), pp. 491–497.Google Scholar
  108. STA2012.
    Starzmann, J.; Casey, M.V.; Mayer, J.F.; Sieverding, F.: Wetness loss prediction for a low pressure steam turbine using CFD. Proc. Baumann Centenary Conference, Paper BCC-2012-14, Cambridge, UK, (2012).Google Scholar
  109. STE1987.
    Steinberg, D.J.: Spherical explosions and the equation of state of water. Report UCID-20974, (1987).Google Scholar
  110. STE1993.
    Stephenson, D.J., Nicholls, J.R.: Modelling erosive wear. Corros. Sci. 5–8(35), 1015–1026 (1993)CrossRefGoogle Scholar
  111. STO1981.
    Stow, C.D.; Hadfield, M.G.: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society of London 373, (1981), Issue 1755.Google Scholar
  112. SUR1989.
    Surov, V.S.; Ageyev, S.G.: Initial Stage in the Impingement of a Water Drop onto a Compressible Baffle. Fluid Mechanics – Soviet Research, Bd. 6 (1989), Issue 18.Google Scholar
  113. TAL1980.
    Talbot, L., Cheng, R., Schefer, R., Willis, D.: Thermophoresis of particles in a heated boundary layer. J. Fluid. Mech. 101(4), 737–758 (1980)CrossRefGoogle Scholar
  114. TAN2012.
    Tanuma, T., Sasao, Y., Yamamoto, S., Niizeki, Y., Shibukawa, N., Saeki, H.: Numerical Investigation of Three-Dimensional Wet Steam Flows in an Exhaust Diffuser with Non-uniform Inlet Flows From the Turbine Stages in a Steam Turbine. Proc. ASME Turbo Expo ■, GT2012–69496 (2012)Google Scholar
  115. TRA1988.
    Traupel, W.: Thermische Turbomaschinen Bd. 1. Springer, Berlin Heidelberg New York (1988)zbMATHGoogle Scholar
  116. TSU2012.
    Tsukuda, T.; Kawagishi, H.; Shibukawa, N.; Hashidate, T.; Goto, K.: Influence of wetness on efficiency of the full scale Size Low Pressure Turbines. Proceedings of ASME Turbo Expo 2012, June 11–15, Copenhagen, Denmark, (2012).Google Scholar
  117. URB2009.
    Urban, J.: Numerische Untersuchung und Modellierung von Tropfen-Wand Interaktionen. Dissertation, Universität Stuttgart, 1999.Google Scholar
  118. VIL1998.
    Villermaux, E.: On the role of viscosity in shear instabilities. Phys. Fluids 10(2), 368–373 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  119. VÖ2005.
    Völker, L.; Casey, M.; Neef, M.; Stüer, H.: The Flow Field and Performance of a Model Low Pressure Steam Turbine. In: Proceedings of ETC6 – 6th Conference on Turbomachinery, Paper AFT–022_05, March 07–11, Lille, France, (2005).Google Scholar
  120. WAL1985.
    Walter, P.T.: Wetness and Efficiency Measurements in L-P Turbines With an Optical Probe as an Aid to Improving Performance. ASME Paper 85-JPGC-GT-9, (1985).Google Scholar
  121. WAL1990.
    Walzel, P.: Zerstäuben von Flüssigkeiten. Chem. Ing. Tech. 62(12), 983–994 (1990)CrossRefGoogle Scholar
  122. WAL2006.
    Van der Wal, R.L., Berger, G.M.: The splash/non-splash boundary upon a surface and thin fluid film. Exp. Fluids 40(1), 53–59 (2006)CrossRefGoogle Scholar
  123. WAN2008.
    Wang, Y.-F., Yang, Z.-G.: Finite element model of erosive wear on ductile and brittle materials. Wear 5–6(265), 871–878 (2008)CrossRefGoogle Scholar
  124. WAW1993.
    Wawrzynek, P.; Ingraffea, A.: FRANC2D: A Two Dimensional Crack Propagation Simulator. User’s Guide, Version 3.1, Cornell Fracture Group, 1993.Google Scholar
  125. WHI1991.
    White, F.M.: Viscous Fluid Flow, 2. Aufl. McGraw-Hill, New York (1991)Google Scholar
  126. WHI1996.
    White, A.J., Young, J.B., Walters, P.T.: Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades. Phil. Trans. Roy. Soc. Lond. A 354(1704), 59–98 (1996)CrossRefGoogle Scholar
  127. WHI2008.
    White, A.; White, B.: Transient Calculations of Nucleation and Droplet Growth for Wet-Steam Expansions. In: 15th International Conference on the Properties of Water and Steam (ICPWS XV), Sept 8–11, Berlin, Germany, (2008).Google Scholar
  128. WIL1980.
    Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36(3), 281–303 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  129. WIL2006.
    Williams, J.; Young, J.: Movement of deposited water on turbomachinery rotor blade surfaces. In: ASME Turbo Expo: Power for Land, Sea, and Air, Volume 6: Turbomachinery, Parts A and B, GT2006-90792, May 8–11, Barcelona, Spain, (2006), pp. 1407–1420.Google Scholar
  130. WOY1999.
    Woytowitz, P.J., Richman, R.H.: Modelling of damage from multiple impacts by spherical particles. Wear 233–235, 120–133 (1999)CrossRefGoogle Scholar
  131. WRO2009.
    Wroblewski, W., Dykas, S., Gepert, A.: Steam Condensing Flow Modeling in Turbine Channels. Int. J. Multphase Flow 35(6), 498–506 (2009)CrossRefGoogle Scholar
  132. XU2005.
    Xu, L., Zhang, W.W., Nagel, S.R.: Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 94(18), 184--505 (2005)CrossRefGoogle Scholar
  133. YAM2010.
    Yamamoto, S., Sasao, Y.; Kato, H.; Satsuki, H.; Ooyama, H.; Ishizaka, K.: Numerical and Experimental Investigations of Unsteady 3-D Wet-Steam Flows Through Two-Stage Stator-Rotor Cascade Channels. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 7 Turbomachinery Parts A, B and C, GT2010-22796, June 14–18, Glasgow, UK, (2010), pp. 2257–2265.Google Scholar
  134. YAR1995.
    Yarin, A.L., Weiss, D.A.: Impact of drops on solid surfaces: selfsimilar capillary waves and splashing as a new kind of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)CrossRefGoogle Scholar
  135. YAR2006.
    Yarin, A.L.: Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  136. YOU1982.
    Young, J.B.: The spontaneous condendation of steam in supersonic nozzles. Phys. Chem. Hydrodyn. 3, 57–82 (1982)Google Scholar
  137. YOU1988a.
    Young, J., Yau, K., Walters, P.: Fog droplet deposition and coarse water formation in low pressure steam turbines: a combined experimental and theoretical analysis. J. Turbomach. 110(2), 163–172 (1988)CrossRefGoogle Scholar
  138. YOU1988b.
    Young, J., Yau, K.: The inertial deposition of fog droplets on steam turbine blades. J. Turbomach. 110, 155--162 (1988)CrossRefGoogle Scholar
  139. YOU1992.
    Young, J.B.: Two Dimensional Non-Equilibrium Wet Steam Calculations for Nozzles and Turbine Cascade. J. Turbomach. 114(3), 569–579 (1992)CrossRefGoogle Scholar
  140. YOU1997.
    Young, J., Leemng, A.: A theory of particle deposition in turbulent pipe flow. J. Fluid. Mech. 340, 129–159 (1997)CrossRefGoogle Scholar
  141. ZAI1995.
    Zaichik, L.; Nagmatulin, B.; Pershukov, V.: Modelling of dynamics of aerosols in near-wall turbulent flows and particle deposition in pipes. Advances in Multiphase Flow, 1995.Google Scholar
  142. ZHU2013.
    Zhu, X.; Yuan, X.Z.L.; Shibukawa, N.; Tsukuda, T.; Niizeki, Y.; Tanuma, T.: An Upwind Eulerian-Eulerian Model for Non-Equilibrium Condensation in Steam Turbines. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-95047, June 3–7, San Antonio, Texas, USA, (2013).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Franz Joos
    • 1
  • Niklas Neupert
    • 2
  1. 1.Helmut-Schmidt-Universität, Universität der Bundeswehr HamburgHamburgDeutschland
  2. 2.Helmut-Schmidt-Universität, Universität der Bundeswehr HamburgHamburgDeutschland

Personalised recommendations