Skip to main content

The Student Experience of Model Development Activties: Going Beyond Correctness to Meet a Client’s Needs

  • Chapter
  • First Online:
Evaluierte Lernumgebungen zum Modellieren

Part of the book series: Realitätsbezüge im Mathematikunterricht ((REIMA))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, E. (1996). Perspective-taking and object construction: two keys to learning. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice: designing, thinking, and learning in a digital world (pp. 25–35). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Borromeo Ferri, R., & Lesh, R. (2013). Should interpretation systems be considered to be models if they only function implicitly? In G. A. Stillman, G. Kaiser, W. Blum & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 57–66). Netherlands: Springer.

    Chapter  Google Scholar 

  • Brady, C., Eames, C., & Lesh, D. (2015). Connecting real‐world and in‐school problem‐solving experiences. Quadrante, 24(2), 5–36.

    Google Scholar 

  • Common Core State Standards for Mathematics (CCSSM) (2010). Common core state standards for mathematics. Washington: National Governors Association Center for Best Practices and the Council of Chief State School Officers. http://www.corestandards.org/math/practice.

    Google Scholar 

  • Detterman, D. R. (1993). The case for prosecution: Transfer as an epiphenomenon. In D. K. Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence (pp. 1–24). Norwood: Ablex.

    Google Scholar 

  • Eames, C., Brady, C., & Lesh, R. (2016). Formative self-assessment: a critical component of mathematical modeling. In C. Hirsch (Ed.), Annual perspectives in mathematics education (APME): mathematical modeling and modeling mathematics (pp. 229–237). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • English, L., Bartolini Bussi, M., Jones, G., Lesh, R., Srirman, B., & Tirosh, D. (2008). Handbook of International Research in Mathematics Education. New York & London: Routledge.

    MATH  Google Scholar 

  • Greeno, J. G., & van de Sande, C. (2007). Perspectival understanding of conceptions and conceptual growth in interaction. Educational Psychologist, 42(1), 9–23.

    Article  Google Scholar 

  • Hjalmarson, M., & Lesh, R. (2007). Design research: Engineering, systems, products, and processes for innovation. Handbook of international research in mathematics education

    Google Scholar 

  • Katims, N., & Lesh, R. (1994). PACKETS: a guidebook for inservice mathematics teacher development. Lexington: DC Heath.

    Google Scholar 

  • Kelly, E., & Lesh, R. (Eds.). (2000). The handbook of research design in mathematics and science education. Hillsdale: Lawrence Erlbaum.

    MATH  Google Scholar 

  • Kelly, A. E., Lesh, R. A., & Baek, J. Y. (2008). Handbook of innovative design research in science, technology, engineering, mathematics (STEM) education. Abington: Taylor & Francis.

    Google Scholar 

  • Lesh, R. (2002). Research design in mathematics education: focusing on design experiments. In L. English (Ed.), International handbook of research design in mathematics education (pp. 27–50). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., & Doerr, H. (Eds.). (2003). Beyond constructivism: a models & modeling perspective on mathematics teaching, learning, and problems solving. Hillsdale: Lawrence Erlbaum.

    MATH  Google Scholar 

  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical thinking and learning, 5(2–3), 157–189.

    Article  Google Scholar 

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In Handbook of research design in mathematics and science education (pp. 591–645).

    Google Scholar 

  • Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. Mathematical thinking and learning, 5(2–3), 211–233.

    Article  Google Scholar 

  • Lesh, R., Yoon, C., & Zawojewski, J. S. (2007). John Dewey revisited: Making mathematics practical vs. making practice mathematical. In R. Lesh, E. Hamilton & J. Kaput (Eds.), Models and modeling as foundations for the future in mathematics education (pp. 315–348). Mahwah: Erlbaum.

    Google Scholar 

  • Lesh, R., Hamilton, E., & Kaput, J. (Eds.). (2008a). Models & modeling as foundations for the future in mathematics education. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., Kelly, A., & Yoon, C. (2008b). Multi-tier design experiments in mathematics, science, and technology education. In A. Kelly & R. Lesh (Eds.), Design research in mathematics, science & technology education. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., Carmona, G., & Moore, T. (2009). Six sigma learning gains and long term retention of understandings and attitudes related to models & modeling. Mediterranean Journal for Research in Mathematics Education, 9(1), 19–54.

    Google Scholar 

  • Lesh, R., Haines, C., Galbraith, P., & Hurford, A. (2010). Modeling students’ mathematical modeling competencies. Boston, MA: Springer.

    Book  MATH  Google Scholar 

  • Rowe, M. B. (1974). Wait time and rewards as instructional variables, their influence on language, logic, and fate control: part 1. Wait time. Journal of Research in Science Teaching, 11(2), 81–94.

    Article  Google Scholar 

  • van de Sande, C. C., & Greeno, J. G. (2012). Achieving alignment of perspectival framings in problem-solving discourse. Journal of the Learning Sciences, 21(1), 1–44.

    Article  Google Scholar 

  • Schön, D. A. (1983). The reflective practitioner: how professionals think in action. New York, NY: Basic books.

    Google Scholar 

  • Schön, D. A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design studies, 13(2), 135–156.

    Article  Google Scholar 

  • Swift, J. N., Gooding, C. T., & Swift, P. R. (1988). Questions and wait time. In J. T. Dillon (Ed.), Questioning and discussion: a multidisciplinary study (pp. 192–211). New York: Ablex.

    Google Scholar 

  • Wittgenstein, L. (1958). Philosophical investigations. Oxford: Blackwell.

    MATH  Google Scholar 

  • Zawojewski, J. S., Magiera, M. T., & Lesh, R. (2013). A proposal for a problem-driven mathematics curriculum framework. The Mathematics Enthusiast, 10(1/2), 469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brady, C., Eames, C., Lesh, R. (2018). The Student Experience of Model Development Activties: Going Beyond Correctness to Meet a Client’s Needs. In: Schukajlow, S., Blum, W. (eds) Evaluierte Lernumgebungen zum Modellieren. Realitätsbezüge im Mathematikunterricht. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-20325-2_5

Download citation

Publish with us

Policies and ethics