Advertisement

Semantically Annotated Manufacturing Data to support Decision Making in Industry 4.0: A Use-Case Driven Approach

Bringing new Structure into existing Data to support Smart Manufacturing
  • Stefan SchabusEmail author
  • Johannes Scholz
Conference paper

Zusammenfassung

Intelligente Fertigung oder Industrie 4.0 ist ein Schlüsselkonzept, um die Produktivität und Qualität in industriellen Fertigungsunternehmen durch Automatisierung und datengetriebene Methoden zu erhöhen. Intelligente Fertigung nutzt Theorien cyber-physischer Systeme, dem Internet der Dinge sowie des Cloud-Computing. In dieser Abhandlung konzentrieren sich die Autoren auf Ontologie und (räumliche) Semantik, die als Technologie dienen, um semantische Kompatibilität der Fertigungsdaten sicherzustellen. Zusätzlich empfiehlt die Abhandlung, fertigungsrelevante Daten über die Einführung von Geografie und Semantik als Sortierformate zu strukturieren. Der in dieser Abhandlung verfolgte Ansatz sichert Fertigungsdaten verschiedener IT-Systeme in einer Graphdatenbank. Während des Datenintegrationsprozesses kommentiert das System systematisch die Daten – basierend auf einer Ontologie, die für diesen Zweck entwickelt wurde – und hängt räumliche Informationen an. Der in dieser Abhandlung vorgestellte Ansatz nutzt eine Analyse von Fertigungsdaten in Bezug auf Semantik und räumliche Abmessung. Die Methodologie wird auf zwei Anwendungsfälle für ein Halbleiterfertigungsunternehmen angewendet. Der erste Anwendungsfall behandelt die Datenanalyse zur Ereignisanalyse unter Verwendung von semantischen ˜hnlichkeiten. Der zweite Anwendungsfall unterstützt die Entscheidungsfindung in der Fertigungsumgebung durch die Identifizierung potentieller Engpässe bei der Halbleiterfertigungslinie.

Schlüsselwörter

Semantic Data Smart Manufacturing Industry 4.0 Spatial Data Geography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1] J. Davis, T. Edgar, J. Porter, J. Bernaden and M. Sarli, “Smart manufacturing, manufacturing intelligence and demand-dynamic performance,” Computers & Chemical Engineering, vol. 47, 2012, pp. 145-156.Google Scholar
  2. [2] R. H. Nyström, I. Harjunkoski and A. Kroll, “Production optimization for continuously operated processes with optimal operation and scheduling of multiple units,” Computers & chemical engineering, vol. 30, no. 3, 2006, pp. 392-406.Google Scholar
  3. [3] M. Hermann, T. Pentek, T. and B. Otto, “Design Principles for Industry 4.0 Scenarios” in 49th Hawaii International Conference on System Sciences (HICSS), 2016, pp. 3928-3937.Google Scholar
  4. [4] D. Zuehlke, “SmartFactory––Towards a factory-of-things” Annual Reviews in Control, vol. 34, 2010, pp. 129-138.Google Scholar
  5. [5] J. Lee, H.-A. Kao, and S. Yang, “Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment,” Procedia CIRP, vol. 16, 2014, pp. 3-8.Google Scholar
  6. [6] M. Uschold and M. Gruninger, “Ontologies: Principles, methods and applications,” Knowledge engineering review, vol. 11, no. 2, 1996, pp. 93-136.Google Scholar
  7. [7] B. Smith, “Objects and their environments: from Aristotle to ecological ontology,” The life and motion of socio-economic units: GISDATA, vol. 8, 2001, pp. 79-97.Google Scholar
  8. [8] T. R. Gruber, “A translation approach to portable ontology specification,” Knowledge Acquisition, vol. 5, no. 2, 1993, pp. 199-220.Google Scholar
  9. [9] E. Davis, Reprsentations of commonsense knowledge, Morgan Kaufmann, 1990.Google Scholar
  10. [10] Y. Bishr and W. Kuhn, “Ontology-based modelling of geospatial information,” in 3rd AGILE Conference on Geographic Information Science, May, 2000, pp. 25-27.Google Scholar
  11. [11] P. Grenon and B. Smith, “SNAP and SPAN: Towards dynamic spatial ontology,” Spatial cognition and computation, vol. 4, no. 1, 2004, pp. 69-104.Google Scholar
  12. [12] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber-physical Systems,” Proceedings of the IEEE, vol. 100, 2012, pp. 13-28.Google Scholar
  13. [13] J.Scholz and S. Schabus, “An indoor navigation ontilogy for production assets in a production environment”, Geographic Information Science: 8th International Conference, GIScience 2014, Vienna, Austria, September 24-26, 2014. Proceedings,” M. Duckham, E. Pebesma, K. Stewart and A. U. Frank, Eds., Ch, a: Springer International Publishing, 2014, pp. 204-220.Google Scholar
  14. [14] L. Yang, and M. A. Worboys, “A navigation ontology for outdoor-indoor space:(work-in-progress),” Proceedings of the 3rd ACM SIGSPATIAL international workshop on indoor spatial awareness, 2011, pp. 31-34,Google Scholar
  15. [15] M. Raubal, and M.A.Worboys, “A formal model of the process of wayfinding in built environments Spatial information theory,” Cognitive and computational foundations of geographic information science, Springer, 1999, pp. 381-399.Google Scholar
  16. [16] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,” Semantic Services, Interoperability and Web Applications: Emerging Concepts, 2009, pp. 205-227.Google Scholar
  17. [17] K. Jung, K. Morris, K. W. Lyons, S. Leong, and H. Cho, “Mapping strategic goals and operational performance metrics for smart manufacturing systems,” Procedia Computer Science, vol. 44, 2015, pp. 184-193.Google Scholar
  18. [18] L. M. S. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and D. Savio, “Socrades: A web service based shop floor integration infrastructure” The internet of things, Springer, 2008, pp. 50-67.Google Scholar
  19. [19] S. Schabus, and J. Scholz, “Geographic Information Science and technology as key approach to unveil the potential of Industry 4.0: How location and time can support smart manufacturing,” in 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2015.Google Scholar
  20. [20] S. Schabus, J. Scholz, and A. Skupin, “Spatial-temporal Patterns of Production Assets in an Indoor Production Environment,” in Proceedings of Workshop” Analysis of Movement Data@14” Workshop at GIScience 2014, 2014.Google Scholar
  21. [21] Suvee D. “Visualizing RDF Schema inferencing through Neo4J, Tinkerpop, Sail and Gephi”,Web: http://datablend.be/?p=260, 2011, [last visited 20-12-2016].
  22. [22] A.U. Frank, “Tiers of ontology and consistency constraints in geographical information systems,” International Journal of Geographical Information Science, vol. 15, no. 7, 2001, pp. 667-678.Google Scholar
  23. [23] L. Obrst, “Ontologies for semantically interoperable systems” Proceedings of the twelfth international conference on Information and knowledge management, 2003, pp. 366-369.Google Scholar
  24. [24] H.-K. Lin, J. A. Harding, and M. Shahbaz, “Manufacturing system engineering ontology for semantic interoperability across extended project teams,” International journal of production research, vol 42, no. 24, 2004, pp. 5099-5118.Google Scholar
  25. [25] I. Robinson, J. Webber, and E. Eifrem, “Graph Databases: New Opportunities for Connected Data.” O’Reilly Media Inc., 2015.Google Scholar
  26. [26] T. J. Lampoltshammer, and S. Wiegand, “Improving the Computational Performance of Ontology-Based Classification Using Graph Databases” Remote Sensing, vol. 7, no. 7, 2015, pp. 9473-9491.Google Scholar
  27. [27] J. J. Miller, “Graph database applications and concepts with Neo4j,” Proceedings of the Southern Association for Information Systems Conference, Atlanta, vol. 2324, 2013, pp. 141-147.Google Scholar
  28. [28] Non-profit Risk Management Centre (NRMC), “Fact Sheet: Accident/Incident/Near Miss Investigation,” http://www.nonprofitrisk.org/tools/workplace-safety/publicsector/concepts/acc-in-nm-ps.htm, 2016, [last visited 20-12-2016].
  29. [29] Blacket, C, “Combining accident analysis techniques for organizational safety,” Ph.D. Thesis. School of Computer Science and Informatics National University of Ireland. 2015.Google Scholar
  30. [30] R. Battle, and D. Kolas, “Geosparql: enabling a geospatial semantic web,” Semantic Web Journal, vol. 3, no. 4, 2011, pp. 355-370.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Infineon Technologies Austria AGVillachÖsterreich
  2. 2.Institute of Geodesy, Research Group GeoinformationGraz University of TechnologyGrazÖsterreich

Personalised recommendations