Multiskalenverfahren zur effektiven Simulation von Transport- und Strömungsmodellen

  • Jürgen Geiser
Chapter

Zusammenfassung

Im nachfolgenden Kapitel geben wird einen theoretischen und praktischen Überblick über Modelle im Bereich der Transport- und Strömungsprobleme, die mehrere Skalen in der Zeit- und Raumvariablen besitzen. Diese Multiskalenmodelle werden dann mit Hilfe von Multiskalenverfahren gelöst. Die Idee der nachfolgenden Multiskalenverfahren bauen auf der Trennung zwischen den Hierarchieebenen auf, d. h. bei zwei Ebenen hat man ein Mikro- und ein Makromodell . Die Modelle können wiederum technische oder naturwissenschaftliche Probleme abbilden, vgl. [3, 27] und [71]. Die Multiskalenverfahren bestehen aus den einzelnen Lösern für die jeweiligen Ebenen, d. h. bei zwei Ebenen haben wir einen makroskopischen Löser und einen mikroskopischen Löser, weiter werden die Ergebnisse auf den einzelnen Ebenen über sogenannte Kopplungsoperatoren verbunden. Damit kommunizieren die beiden Ebenen miteinander, d. h. es werden Daten und Parameter ausgetauscht. Die einzelnen Elemente der Multiskalenmethoden mit ihren Lösungsmethoden wollen wir im Folgenden besprechen und an ausgewählten Beispielen einsetzen.

Literatur

  1. 1.
    Antonic, N., van Duijn, C.J., Jäger, W., Mikelic, A.: Multiscale Problems in Science und Technology: Challenges to Mathematical Analysis und Perspectives. In: Antonic, N., van Duijn, C.J., Jäger, W., Mikelic, A. (Hrsg.) Proceedings of the Conference on Multiscale Problems in Science und Technology, Dubrovnik, 3–9 Sept 2000. Springer, Berlin/Heidelberg/New York (2002)Google Scholar
  2. 2.
    Ascher, M.U., Petzold, R.L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)Google Scholar
  3. 3.
    Attinger, S., Koumoutsakos, P.: Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, Bd. 39. Springer, Berlin/Heidelberg (2004)Google Scholar
  4. 4.
    Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)Google Scholar
  5. 5.
    Berger, J.M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)Google Scholar
  6. 6.
    Bergmann, L., Schaefer, C.: Lehrbuch der Experimentalphysik: Gase, Nanosysteme, Flüssigkeiten, 2. Aufl. Walter de Gruyter, Berlin/New York (2005)Google Scholar
  7. 7.
    Brandt, A.: Multiscale Scientific Computation: Review 2000. Multiscale and Multiresolution Methods, S. 1–96. Springer, Berlin/Heidelberg (2001)Google Scholar
  8. 8.
    Bungartz, H.-J., Schäfer, M.: Fluid-Structure Interaction: Modelling, Simulation, Optimization. Springer, Berlin/Heidelberg/New York (2006)Google Scholar
  9. 9.
    Clay, T.L.: Millennium Problems: Can a Solution Exists? Web-Seite: http://www.claymath.org/millennium-problems/navier-stokes-equation(2014)
  10. 10.
    Coenen, E.W.C., et al.: Multi-scale continuous-discontinuous framework for computational-homogenization-localization, J. Mech. Phys. Solids 60(8), 1486–1507 (2012)Google Scholar
  11. 11.
    Daia, R., Wangb, Y., Zhanga, J.: Fast and high accuracy multiscale multigrid method with multiple coarse grid updating strategy for the 3D convection-diffusion equation. Comput. Math. Appl. 66(4), 542–559 (2013)Google Scholar
  12. 12.
    de Baas, A.F.: Material Modelling. Report on EMMC International Workshop Materials Modelling (2015)Google Scholar
  13. 13.
    Deville, M., Gatski, B.T.: Mathematical Modeling for Complex Fluids and Flows. Springer, Berlin/Heidelberg (2012)Google Scholar
  14. 14.
    Donne, D.: Navier-Stokes and Cahn-Hilliard: Pure Analytic Solutions. LAP Lambert Academic Publishing, Saarbrücken (2011)Google Scholar
  15. 15.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: ACM SIGGRAPH Proceedings, S. 173–182 (1995)Google Scholar
  16. 16.
    Engel, E., Dreizler, M.R.: Density Functional Theory: An Advanced Course. Theoretical and Mathematical Physics. Springer, Berlin/Heidelberg (2011)Google Scholar
  17. 17.
    Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis, Bd. VII, S. 717–1020. North-Holland-Elsevier, Amsterdam (2000)Google Scholar
  18. 18.
    Fishman, G.: Monte Carlo. Springer Series in Operations Research and Financial Engineering. Springer, Berlin/Heidelberg/New York (1996)Google Scholar
  19. 19.
    Gander, J.M., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)Google Scholar
  20. 20.
    Geiser, J.: Discretization methods with embedded analytical solutions for convection-diffusion dispersion-reaction equations and applications. J. Eng. Math. 57(1), 79–98; Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Geiser, J.: Discretization and Simulation of Systems for Convection-Diffusion-Dispersion Reactions with Applications in Groundwater Contamination. Monograph, Series: Groundwater Modelling, Management and Contamination. Nova Science Publishers, New York (2008)Google Scholar
  22. 22.
    Geiser, J.: Iterative Operator-Splitting Methods with Higher Order Time-Integration Methods and Applications for Parabolic Partial Differential Equations. J. Comput. Appl. Math. 217, 227–242 (2008). Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Geiser, J.: Iterative Splitting Methods for Differential Equations. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2011)Google Scholar
  24. 24.
    Geiser, J.: Coupled NavierStokes molecular dynamics simulation: theory and applications based on iterative operator-splitting methods. Comput. Fluids 77(1), 97–111 (2013)Google Scholar
  25. 25.
    Geiser, J.: Coupled Systems: Theory, Models, and Applications in Engineering. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2014)Google Scholar
  26. 26.
    Geiser, J.: Recent Advances in Splitting Methods for Multiphysics and Multiscale: Theory and Applications. J. Algorithms Comput. Technol. 9(1), 65–94; Multi-Science, Brentwood (2015)Google Scholar
  27. 27.
    Geiser, J.: Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering. Springer, Cham/Heidelberg/New York/Dordrecht/London (2016)Google Scholar
  28. 28.
    Geiser, J.: Multiscale Modeling of Solute Transport Through Porous Media Using Homogenisation and Splitting Methods. Math. Comput. Model. Dyn. Syst. 22(3), 221–243. Taylor and Francis, Abingdon (2016)Google Scholar
  29. 29.
    Geiser, J., Arab, M.: Modelling, Optimization and Simulation for a Chemical Vapor Deposition. J. Porous Media, Begell House Inc., Redding 2(9), 847–867 (2009)Google Scholar
  30. 30.
    Geiser, J., Güttel, S.: Coupling methods for heat transfer and heat flow: Operator splitting and the parareal algorithm. J. Math. Anal. Appl. 388(2), 873–887 (2012)Google Scholar
  31. 31.
    Grossmann, Chr., Roos, G.H., Stynes, M.: Numerical Treatment of Partial Differential Equations. Universitext, 1st edn. Springer, Berlin/Heidelberg/New York (2007)Google Scholar
  32. 32.
    Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin/New York/Heidelberg (1985)Google Scholar
  33. 33.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Applied Mathematical Sciences. Springer, Berlin/New York/Heidelberg (1994)Google Scholar
  34. 34.
    Hadamard, J.: Sur les problemes aux derivees partielles et leur signification physique. Princeton University Bulletin, S. 49–52 (1902)Google Scholar
  35. 35.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Bd. 14. SCM, Springer, Berlin/Heidelberg/New York (1996)Google Scholar
  36. 36.
    Hairer, E., Norsett, P.S., Wanner, G.: Solving Ordinary Differential Equations I, Bd. 8. SCM. Springer, Berlin/Heidelberg/New York (1992)Google Scholar
  37. 37.
    Harten, A.: Multiresolution Representation and Numerical Algorithms: A Brief Review. Nasa-Report (1994)Google Scholar
  38. 38.
    Hartmann, U.: Nanostrukturforschung und Nanotechnologie: Materialien und Systeme. De Gruyter Lehrbuch. Oldenbourg (2015)Google Scholar
  39. 39.
    Horizon 2020: Modelling Materials. European commision, web-sites: http://ec.europa.eu/research/industrial_technologies/materials_en.html(2017)
  40. 40.
    Horstemeyer, F.M.: Multiscale modeling: a review. In: Leszczynski, J., Shukla, K.M. (Hrsg.) Practical Aspects of Computational Chemistry: Methods, Concepts and Applications, S. 87–135. Springer, Dordrecht (2010)Google Scholar
  41. 41.
    John, V.: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics. Springer, Berlin/Heidelberg/New York (2016)Google Scholar
  42. 42.
    Kevrekidis, G.I., Samaey, G.: Equation-free multiscale computation: Algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009)Google Scholar
  43. 43.
    Kevrekidis, G.I., et al.: Equation-free, coarse-grained multiscale computation. Commun. Math. Sci. 1(4), 715–762 (2003)Google Scholar
  44. 44.
    Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen: Eine anwendungsorientierte Einführung. Springer-Lehrbuch Masterclass. Springer, Berlin/Heidelberg (2000)Google Scholar
  45. 45.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1997)Google Scholar
  46. 46.
    Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer, Berlin/Heidelberg (2013)Google Scholar
  47. 47.
    Le Bris, C., Lelievre, T.: Micro-macro models for viscoelastic fluids: Modelling, mathematics and numerics. Sci. China Math. 55(2), 353–384 (2012)Google Scholar
  48. 48.
    Lions, L.P., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. 21B(2), 131–146 (2000)Google Scholar
  49. 49.
    Markov, K., Preziosi, L.: Heterogeneous Media: Micromechanics Modeling Methods and Simulations. Series: Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Basel (2000)Google Scholar
  50. 50.
    Marx, D., Hutter, J.: Ab initio molecular dynamics: Theory and implementation. In: Grotendorst, J. (Hrsg.) Modern Methods and Algorithms of Quantum Chemistry. NIC Series, Bd. 1, S. 301–449. John von Neumann Institute for Computing, Jülich (2000)Google Scholar
  51. 51.
    McLachlan, I.R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)Google Scholar
  52. 52.
    Mehl, M.: Tackling the Multi-Challenge Multiphysics. IAS Inaugural Lecture (2010)Google Scholar
  53. 53.
    Millenium Problems: Millennium prize: the NavierStokes existence and uniqueness problem. https://en.wikipedia.org/wiki/Millennium_Prize_Problems(2017)
  54. 54.
    Nugroho, G., Ali, A.M.S., Karim, Z.A.A.: The Navier-Stokes Equations: On Special Classes and Properties of Exact Solutions of 3D Incompressible Flows. LAP LAMBERT Academic Publishing, Saarbrücken (2011)Google Scholar
  55. 55.
    Oden, T.J., Prudhomme, S., Romkes, A., Bauman, P.T.: Multiscale modeling of physical phenomena: adaptive control of models. SIAM J. Sci. Comput. 28(6), 2359–2389 (2006)Google Scholar
  56. 56.
    Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin/Heidelberg (2002)Google Scholar
  57. 57.
    Ortiz, M.: Multiscale Modeling of Materials. Lecture Notes. Conference Krell Institute, 27 July 2012Google Scholar
  58. 58.
    Pavliotis, A.G., Stuart, M.A.: Multiscale Methods: Averaging and Homogenization. Springer, Heidelberg (2008)Google Scholar
  59. 59.
    Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)Google Scholar
  60. 60.
    Russell, T.F., Celia, A.M.: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)Google Scholar
  61. 61.
    Russell, F.T., Heberton, I.C., Konikow, F.L., Hornberger, Z.G.: A finite-volume ELLAM for three-dimensional solute-transport modeling. Ground Water 41(2), 258–272 (2003)Google Scholar
  62. 62.
    Samaey, G., Kevrekidis, G.I., Roose, D.: Patch dynamics with buffers for homogenization problems. J. Comput. Phys. 213(1), 264–287 (2006)Google Scholar
  63. 63.
    Schade, H., Kunz, E.: Strömungslehre. de Gruyter, Berlin (2007)Google Scholar
  64. 64.
    Sencu, M.R., Yang, Z., Wang, C.Y.: An adaptive stochastic multi-scale method for cohesive fracture modelling of quasi-brittle heterogeneous materials under uniaxial tension. Eng. Fract. Mech. 163, 499–522 (2016)Google Scholar
  65. 65.
    Shkoller, S.: An approximate homogenization scheme for nonperiodic materials. Comput. Math. Appl. 33(4), 15–34 (1997)Google Scholar
  66. 66.
    Sidi, A.: Practical Extrapolation Methods. Cambridge Monographs on Applied and Computational Mathematics, Bd. 10. Cambridge University Press, Cambridge/New York/Melbourne/ Madrid/Cape Town/Singapore/Sao Paulo (2003)Google Scholar
  67. 67.
    Steijl, R., Barakos, G.: Coupled NavierStokes/molecular dynamics simulations in nonperiodic domains based on particle forcing. Int. J. Numer. Meth. Fluids 69, 1326–134 (2012)Google Scholar
  68. 68.
    Steinhauser, O.M.: Computational Multiscale Modeling of Fluids and Solids: Theory and Applications. Springer, Berlin/Heidelberg/New York (2008)Google Scholar
  69. 69.
    Vlachos, G.D.: A Review of Multiscale Analysis. Advances in Chemical Engineering (2005)Google Scholar
  70. 70.
    Wedeler, G.: Lehrbuch der Physikalischen Chemie, 5. Aufl. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)Google Scholar
  71. 71.
    Weinan, E., Engquist, B.: Multiscale modelling and computations. Not. AMS 50(9), 1062–1070 (2003)MATHGoogle Scholar
  72. 72.
    Weinan, E., Engquist, B.: Heterogeneous multiscale method. Commun. Math. Sci. 1(1), 87–132 (2003)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Weinan, E.: Principle of Multiscale Modelling. Cambridge University Press, Cambridge (2010)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jürgen Geiser
    • 1
  1. 1.Ruhr-Universität BochumBochumDeutschland

Personalised recommendations