Theoretischer Überblick zu den numerischen Verfahren

  • Jürgen Geiser
Chapter

Zusammenfassung

Im folgenden Kapitel wird ein theoretischer Überblick über eine Reihe von numerischen Verfahren gegeben, die wir später als Kernmethoden zur numerischen Lösung von Transport- und Strömungsproblemen verwenden wollen. Dabei werden die zugehörigen Differentialgleichungen klassifiziert und Diskretisierungsverfahren im Bereich der Finite Differenzen-Methoden , vgl. Larsson und Thomee (Partial differential equations with numerical methods. Text in applied mathematics, vol 45. Springer, Berlin/Heidelberg, 2003) und Gustafsson (High order difference methods for time dependent PDE. Springer series in computational mathematics, vol 38. Springer, Berlin/New York/Heidelberg, 2007), und Lösungsverfahren, vgl. Axelsson (Iterative solution methods. Cambridge University Press, Cambridge, 1996) und Hackbusch (Iterative solution of large sparse systems of equations. Applied mathematical sciences. Springer, Berlin/New York/Heidelberg, 1994), für die einzelnen Gleichungen vorgestellt.

Literatur

  1. 1.
    Abgrall, R., Shu, C.-W.: Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental. Handbook of Numerical Analysis, Bd. 17. Elsevier, Amsterdam/Oxford (2016)Google Scholar
  2. 2.
    Amann, H.: Gewöhnliche Differentialgleichungen, 2. Aufl. De Gruyter Lehrbücher, Berlin/New York (1995)Google Scholar
  3. 3.
    Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12, 547–560 (1965)Google Scholar
  4. 4.
    ANSYS.: ANSYS: Technische Simulationslösungen, Canonsburg. http://www.ansys.com/de-DE (2017)
  5. 5.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)Google Scholar
  6. 6.
    Bakhvalov, N.S.: Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials. Mathematics and Its Applications. Springer, Berlin/Heidelberg/New York (2013)Google Scholar
  7. 7.
    Bastian, P., Birken, K., Eckstein, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H.: UG – a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27–40 (1997)Google Scholar
  8. 8.
    Bathe, K.-J.: Finite-Elemente-Methoden. Springer, Berlin/Heidelberg/New York (2002)Google Scholar
  9. 9.
    Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Transport. Theory and Applications of Transport in Porous Media. Springer, Dordrecht/Heidelberg/Berlin/New York (2010)Google Scholar
  10. 10.
    Böhme, G.: Strömungsmechanik nichtnewtonscher Fluide. Teubner, Leipzig (2000)Google Scholar
  11. 11.
    Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3. Aufl. Cambridge University Press, Cambridge (2007)Google Scholar
  12. 12.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, Bd. 15. Springer, New York (2008)Google Scholar
  13. 13.
    Burgers, J.M.: Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion. Selected Papers of Burgers, J.M., Editor Nieuwstadt, F.T.M., S. 281–334. Springer, Dordrecht (1995)Google Scholar
  14. 14.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2. Aufl. Wiley, Inc., Hoboken (2008)Google Scholar
  15. 15.
    Cohen, G.: Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation. Springer, Berlin/Heidelberg/New York (2002)Google Scholar
  16. 16.
    COMSOL.: COMSOL, Multiphysics, Software-Package, Burlington. http://www.comsol.com/COMSOL (2014)
  17. 17.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, Bd. 325. Springer, Berlin/Heidelberg/New York (2016)Google Scholar
  18. 18.
    Dafermos, C.M., Feireisl, E.: Handbook of Differential Equations: Evolutionary Equations, Bd. 1. Elsevier, Amsterdam (2002)Google Scholar
  19. 19.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathematiques et Applications, Bd. 69. Springer, Berlin/Heidelberg/New York (2012)Google Scholar
  20. 20.
    Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics. AMS, Providence (2010)Google Scholar
  21. 21.
    Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Lions, J.-L., Ciarlet, P.G. (Hrsg.) Handbook of Numerical Analysis, Bd. VII, S. 717–1020. North-Holland/Elsevier, Amsterdam (2000)Google Scholar
  22. 22.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics, 3. Aufl. Springer, Berlin/Heidelberg/New York (2002)Google Scholar
  23. 23.
    Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Bd. I, II. Springer Series in Computational Physics. Springer, Berlin/Heidelberg/New York (1988)Google Scholar
  24. 24.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg/New York (2011)Google Scholar
  25. 25.
    Geiser, J.: Discretization and Simulation of Systems for Convection-Diffusion-Dispersion Reactions with Applications in Groundwater Contamination. Monograph, Series: Groundwater Modelling, Management and Contamination. Nova Science Publishers, Inc., New York (2008)Google Scholar
  26. 26.
    Geiser, J.: Iterative operator-splitting methods with higher order time-integration methods and applications for parabolic partial differential equations. J. Comput. Appl. Math. 217, 227–242 (2008)Google Scholar
  27. 27.
    Geiser, J.: Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications to Burgers equations. J. Comput. Appl. Math. 231(2), 815–827 (2009)Google Scholar
  28. 28.
    Geiser, J.: Models and Simulation of Deposition Processes with CVD Apparatus. Groundwater Modeling, Management and Contamination. Nova Science Publishers, New York (2009)Google Scholar
  29. 29.
    Geiser, J.: Iterative Splitting Methods for Differential Equations. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2011)Google Scholar
  30. 30.
    Geiser, J.: Multiscale modeling of PE-CVD apparatus: simulations and approximations. Polymers 5, 142–160 (2013)Google Scholar
  31. 31.
    Geiser, J.: Additive via iterative splitting schemes: algorithms and applications in heat-transfer problems. In: Ivanyi, P., Topping, B.H.V. (Hrsg.) Proceedings of the Ninth International Conference on Engineering Computational Technology. Civil-Comp Press, Stirlingshire, Paper 51.  https://doi.org/10.4203/ccp.105.51 (2014)
  32. 32.
    Geiser, J.: Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering. Springer, Cham/Heidelberg/New York/Dordrecht/London (2016)Google Scholar
  33. 33.
    Geiser, J., Arab, M.: Modelling, Optimization and Simulation for a Chemical Vapor Deposition. J. Porous Media 2(9), 847–867 (2009)Google Scholar
  34. 34.
    Geiser, J., Fleck, C.: Adaptive Step-size Control in Simulation of Diffusive CVD Processes, Bd. 2009, S. 34. Mathematical Problems in Engineering. Hindawi Publishing Corp., New York. Art. ID 728105 (2009)Google Scholar
  35. 35.
    Geiser, J., Griewank, A.: Nanobeschichtete, metallische Bipolarplatte für PEFC: Schlussbericht, Berichtszeitraum: 01 July 2007–30 June 2011. Technische Informationsbibliothek und Universitätsbibliothek, Hannover, Reportnr./Förderkennzeichen: 03SF0325E, 01057312 (2011)Google Scholar
  36. 36.
    Geiser, J., Roehle, R.: Kinetic Processes and Phase-Transition of CVD Processes for Ti2SiC3. JCIT J. Converg. Inf. Technol. 5(6), 9–32 (2010)Google Scholar
  37. 37.
    Girault, V.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer, Berlin/New York (1986)Google Scholar
  38. 38.
    Grossmann, C., Roos, H.G., Stynes, M.: Numerical Treatment of Partial Differential Equations, 1. Aufl. Universitext. Springer, Berlin/Heidelberg/New York (2007)Google Scholar
  39. 39.
    Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer Series in Computational Mathematics, Bd. 38. Springer, Berlin/New York/Heidelberg (2007)Google Scholar
  40. 40.
    Gustafsson, G.B., Wilcox, C.H.: Analytical and Computational Methods of Advanced Engineering Mathematics. Texts in Applied Mathematics, Bd. 28. Springer, Berlin/New York/Heidelberg (1998)Google Scholar
  41. 41.
    Gutierrez, J.M., Hernandez, M.A.: An acceleration of Newton’s method: Super-Halley method. Appl. Math. Comput. 117, 223–239 (2001)Google Scholar
  42. 42.
    Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher, Stuttgart (1986)Google Scholar
  43. 43.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Applied Mathematical Sciences. Springer, Berlin/New York/Heidelberg (1994)Google Scholar
  44. 44.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, Bd. 14. Springer, Berlin/Heidelberg/New York (1996)Google Scholar
  45. 45.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer Series in Computational Mathematics, Bd. 8. Springer, Berlin/Heidelberg,New York (1992)Google Scholar
  46. 46.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, Bd. 31. Springer, Berlin/Heidelberg/New York (2002)Google Scholar
  47. 47.
    Heuser, H.: Gewöhnliche Differentialgleichungen. Teubner-Verlag, Wiesbaden (2004)Google Scholar
  48. 48.
    Hsiao, G., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, Bd. 164. Springer, Berlin/Heidelberg (2008)Google Scholar
  49. 49.
    Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin/New York (2003)Google Scholar
  50. 50.
    Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM Frontiers in Applied Mathematics, Bd. 16. SIAM, Philadelphia (1995)Google Scholar
  51. 51.
    Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Fundamentals of Algorithms. SIAM, Philadelphia (2003)Google Scholar
  52. 52.
    Khoromskij, B.N., Wittum, G.: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface. Lecture Notes in Computational Science and Engineering, Bd. 36. Springer, Berlin/Heidelberg (2004)Google Scholar
  53. 53.
    Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen: Eine anwendungsorientierte Einführung. Springer-Lehrbuch Masterclass, Springer, Berlin/Heidelberg (2000)Google Scholar
  54. 54.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1997)Google Scholar
  55. 55.
    Landau, L.D., Lifschitz, E.M.: Lehrbuch der theoretischen Physik, Band VI Hydrodynamik. Akademie Verlag, Berlin (1991)Google Scholar
  56. 56.
    Langtangen, H.P.: Computational Partial Differential Equations: Numerical Methods and Diffpack Programming. Texts in Computational Science and Engineering. Springer, Berlin/Heidelberg (2003)Google Scholar
  57. 57.
    Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods. Text in Applied Mathematics, Bd. 45. Springer, Berlin/Heidelberg (2003)Google Scholar
  58. 58.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics. ETH-Zurich, Birkhauser-Verlag, Basel (1990)Google Scholar
  59. 59.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  60. 60.
    LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)Google Scholar
  61. 61.
    Lopez, C.: MATLAB Differential Equations, 1. Aufl. Apress, Springer, New York (2014)Google Scholar
  62. 62.
    McLachlan, R.I., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)Google Scholar
  63. 63.
    Ohring, M.: Materials Science of Thin Films, 2. Aufl. Academic, San Diego/New York/Boston/London (2002)Google Scholar
  64. 64.
    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer, Berlin/Heidelberg (1992)Google Scholar
  65. 65.
    Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Heidelberg (2008)Google Scholar
  66. 66.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, New York (1995)Google Scholar
  67. 67.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton/London/New York/Washington, DC (2004)Google Scholar
  68. 68.
    Reddy, J.N.: An Introduction to Continuum Mechanics, 2. Aufl. Cambridge University Press, Cambridge/New York/Melbourne/Madrid/Cape Town/Singapore/Sao Paulo/Delhi/Mexico City (2013)Google Scholar
  69. 69.
    Riviere, B.M.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics, Bd. 35. Cambridge University Press, Cambridge (2008)Google Scholar
  70. 70.
    Roache, P.J.: A flux-based modified method of characteristics. Int. J. Numer. Methods Fluids 15(11), 1259–1275 (1992)Google Scholar
  71. 71.
    Russell, T.F., Celia, M.A.: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)Google Scholar
  72. 72.
    Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics, Bd. 39. Springer, Berlin/Heidelberg/New York (2012)Google Scholar
  73. 73.
    Scavo, T.R., Thoo, J.B.: On the geometry of Halley’s method. Am. Math. Mon. 102, 417–426 (1995)Google Scholar
  74. 74.
    Seibold, B.: A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains. Lecture Notes, MIT-Open-CourseWare (2009)Google Scholar
  75. 75.
    Sidi, A.: Practical Extrapolation Methods. Cambridge Monographs on Applied and Computational Mathematics, No. 10, Cambridge University Press, Cambridge/New York/Melbourne/ Madrid/Cape Town/Singapore/Sao Paulo (2003)Google Scholar
  76. 76.
    Stanoyevitch, A.: Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB. Wiley Series in Pure and Applied Mathematics. Wiley, Hoboken (2005)Google Scholar
  77. 77.
    Stoer, J., Burlisch, C.: Introduction to Numerical Analysis. Texts in Applied Mathematics. Springer Berlin/Heidelberg (2002)Google Scholar
  78. 78.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)Google Scholar
  79. 79.
    Strehmel, K., R. Weiner und Podhaisky, H.: Numerik gewöhnlicher Differentialgleichungen. Vieweg+Teubner Verlag/Springer Fachmedien Wiesbaden, Wiesbaden (2012)Google Scholar
  80. 80.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics. Artech House, Boston, London (2005)Google Scholar
  81. 81.
    Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, Bd. 25. Springer, Berlin/Heidelberg (1997)Google Scholar
  82. 82.
    Toth, A., Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 53(2), 805–819 (2015)Google Scholar
  83. 83.
    Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)Google Scholar
  84. 84.
    Wächter, M.: Stoffe, Teilchen, Reaktionen. Verlag Handwerk und Technik, Hamburg (2000)Google Scholar
  85. 85.
    Wedeler, G.: Lehrbuch der Physikalischen Chemie, 5. Aufl. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jürgen Geiser
    • 1
  1. 1.Ruhr-Universität BochumBochumDeutschland

Personalised recommendations