String Coding in a Generic Framework

  • Manuel MunzEmail author
  • Knut Wenzig
  • Daniel Bela


For many questions in the social sciences that are supposed be answered with survey data, reliable and detailed information about occupations is crucial. As classifications for occupations are very extensive and complex, it is not feasible to simply present a full scheme to the respondent. To overcome this issue, an open string is queried from the respondent and later converted to an appropriate entry in a chosen classification. This task can be handled using a generic coding framework, which is illustrated in this article. The raw material with the strings-to-code (reported occupations) and covariate information has to be prepared and delivered to the process itself. The selected coding scheme has to meet several requirements, such as discriminatory power, completeness, and adequacy. The NEPS’s coding framework can be adapted to a larger set of variables: The interface for exporting content-to-code from the NEPS dataset files is used beyond the coding of occupational information. Every NEPS survey developer who is urged to classify his or her string variable(s) is provided with spreadsheets ready for the related workflow. When finished, the NEPS Data Center re-imports these spreadsheets into the dataset. Several further mechanisms have been integrated into this process to ensure high data quality.


Open String Auxiliary Variable Manual Code Occupational Position Data Edition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blossfeld, H.-P. (1989): Kohortendifferenzierung und Karriereprozess: Eine Längsschnittstudie über die Veränderung der Bildungs- und Berufschancen im Lebenslauf. Frankfurt (Main), New York : Campus Verlag.Google Scholar
  2. Bundesagentur für Arbeit (2011): Klassifikation der Berufe 2010: Definitorischer und beschreibender Teil (Band 2). Nürnberg: Bundesagentur für Arbeit.Google Scholar
  3. Bundesagentur für Arbeit (2013a): Gesamtberufsliste_der_BA.xlsx. Retrieved from
  4. Bundesagentur für Arbeit (2013b): Retrieved from & dateiId=1154&breadcrumb=list
  5. Elias, P., & M. Birch (1994): Establishment of community-wide occupational statistics. ISCO 88 (COM)—A guide for users. Retrieved from University of Warwick, Institute for Employment Research website:
  6. Ganzeboom, H. B. G., & Treiman D. J. (1996). Internationally comparable measures of occupational status for the 1988 International Standard Classification of Occupations. Social Science Research 25(10), 201 – 239.Google Scholar
  7. Ganzeboom, H. B. G., & Treiman D. J. (2010). Occupational status measures for the new International Standard Classification of Occupations ISCO-08; with a discussion of the new classification. Retrieved from
  8. ILO (2013). Correspondence table ISCO-08—ISCO-88. Retrieved from
  9. Paulus, W., Schweizer, R., & Wiemer S. (2010). Klassifikation der Berufe 2010. Entwicklung und Ergebnis. Retrieved from
  10. Prandy, K., & Jones F. L. (2001). An international comparative analysis of marriage patterns and social stratification. International Journal of Sociology and Social Policy, 21(4-6), 165 – 183.Google Scholar
  11. R Development Core Team (2011). R: A language and environment for statistical computing. Retrieved from

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.ErlangenDeutschland
  2. 2.BerlinDeutschland
  3. 3.BambergDeutschland

Personalised recommendations