Epistemological Judgments in Mathematics: An Interview Study Regarding the Certainty of Mathematical Knowledge

  • Benjamin RottEmail author
  • Timo Leuders
  • Elmar Stahl
Part of the Freiburger Empirische Forschung in der Mathematikdidaktik book series (FEFMD)


Research on personal epistemology is confronted with theoretical issues as there exist conflicting data regarding its coherence, discipline-relation and contextdependence as well as methodological issues regarding the often used questionnaires to measure epistemological beliefs. We claim that it is necessary to distinguish between relatively stable “epistemological beliefs” and situationspecific “epistemological judgments”. In a sequence of interviews with regard to the topic of “certainty of mathematical knowledge”, we show that the usual categories used in questionnaires to measure epistemological beliefs have to be differentiated. We argue that epistemological judgments provide a promising framework to interpret the statements of the interviewees.


Mathematical Knowledge Knowledge Claim Epistemological Belief Epistemic Belief Pythagorean Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beutelspacher, Albrecht (2001). Pasta all'infinito – Meine italienische Reise in die Mathematik. [My Italian Journey into Mathematics] München: dtv.Google Scholar
  2. Borg, Simon (2010). Language Teacher Research Engagement. In Language Teaching, 43 (4), pp. 391–429.CrossRefGoogle Scholar
  3. Borwein, Jonathan, & Devlin, Keith (2011). Experimentelle Mathematik – Eine beispielorientierte Einführung. [Experimental Mathematics – An Introduction] Heidelberg: Spektrum.Google Scholar
  4. Bromme, Rainer; Kienhues, Dorothe; & Stahl, Elmar (2008). Knowledge and epistemological beliefs: An intimate but complicate relationship. In Khine, Myint Swe (Ed.). Knowing, knowledge and beliefs. Epistemological studies across diverse cultures. New York: Springer, pp. 423–441.CrossRefGoogle Scholar
  5. Heintz, Bettina (2000). Die Innenwelt der Mathematik. [The Inner World of Mathematics] Wien: Springer.CrossRefGoogle Scholar
  6. Hofer, Barbara K. (2000). Dimensionality and Disciplinary Differences in Personal Epistemology. In Contemporary Educational Psychology 25 (2000), pp. 378–405.CrossRefGoogle Scholar
  7. Hofer, Barbara K. & Pintrich, Paul R. (1997). The Development of epistemological Theories: Beliefs About Knowledge and Knowing and Their Relation to Learning. In Review of Educational Research 1997, Vol. 67, No. 1, pp. 88–140.Google Scholar
  8. Hoffmann, Dirk (2011). Grenzen der Mathematik. [Limits of Mathematics] Heidelberg: Spektrum.CrossRefGoogle Scholar
  9. Grigutsch, Stefan; Raatz, Ulrich; & Törner, Günter (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. [Attitudes of Mathematics Teachers towards Mathamatics] In Journal für Mathematik-Didaktik 19 (98) 1, pp. 3–45.CrossRefGoogle Scholar
  10. KMK – Kultusministerkonferenz (2004). Standards für die Lehrerbildung: Bildungswissenschaften. Beschluss der Kultusministerkonferenz. [Standards for Teacher Education: Educational Sciences. Resolution of the Standing Conference of Education Ministers.] (10.05.2013):
  11. Muis, Krista R. (2004). Personal Epistemology and Mathematics: A Critical Review and Synthesis of Research. In Review of Educational Research 2004, 74, No. 3, pp. 317–377.Google Scholar
  12. Muis, Krista R.; Franco, Gina M.; & Gierus, Bogusia (2011). Examining Epistemic Beliefs Across Conceptual and Procedural Knowledge in Statistics. In ZDM Mathematics Education (2011), 43, pp. 507–519.Google Scholar
  13. Philipp, Randolph A. (2007). Mathematics Teachers' Beliefs and Affect (Chapter 7). In Lester, Frank K. (Ed.). Second Handbook of Research on Mathematics Teaching and Learning, pp. 257–315Google Scholar
  14. Schoenfeld, Alan H. (1994). Reflections on Doing and Teaching Mathematics (Chapter 3). In Schoenfeld, Alan H. (Ed.). Mathematical Thinking and Problem Solving. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 53–69.Google Scholar
  15. Schoenfeld, Alan H. (1992). Learning to Think Mathematically. In Grouws, Douglas A. (Ed.). Handbook for Research on Mathematics Teaching and Learning. New York: MacMillan, pp. 334–370.Google Scholar
  16. Stahl, Elmar, & Bromme, Rainer (2007). The CAEB: An instrument for measuring connotative aspects of epistemological beliefs. In Learning and Instruction 17 (2007), pp. 773–785.CrossRefGoogle Scholar
  17. Stahl, Elmar (2011). The Generative Nature of Epistemological Judgments: focusing on Interactions Instead of Elements to Understand the Relationship Between Epistemological Beliefs and Cognitive Flexibility (Chapter 3). In ; Elen, Jan; Stahl, Elmar; Bromme, Rainer, & Clarebout, Geraldine (Eds.). Links Between Beliefs and Cognitive Flexibility – Lessons Learned. Dordrecht: Springer, pp. 37–60.CrossRefGoogle Scholar
  18. Strauss, Anselm L.; Corbin, Juliet M. (1996). Grounded Theory: Grundlagen Qualitativer Sozialforschung. [Grounded Theory: Basics of Qualitative Social Research.] Weinheim: Beltz.Google Scholar
  19. Tremp, Peter, & Futter, Kathrin (2012). Forschungsorientierung in der Lehre. Curriculare Leitlinie und studentische Wahrnehmungen. [Research Orientation in Teaching. Curricular Guidelines and Students’ Perception.] In Brinker, Tobina, & Tremp, Peter (Eds.). Einführung in die Studiengangentwicklung. Bielefeld: Bertelsmann, pp. 69–79.Google Scholar
  20. Wilson, Robin (2002). Four Colors Suffice. Princeton University Press.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.University of Education FreiburgFreiburgGermany

Personalised recommendations