Advertisement

Automatische Auswertung von Kundenmeinungen – Opinion Mining am Beispiel eines Projekts für die Versicherungswirtschaft

  • Dirk Reinel
  • Jörg Scheidt

Zusammenfassung

Mit der zunehmenden Menge textueller Daten im Web 2.0 wächst auch die Notwendigkeit der maschinellen Auswertung dieser Daten, beispielsweise um in Texten geäußerte Meinungen aufzuspüren (Opinion Mining). Im vorliegenden Beitrag wird das Aspect-based Opinion Mining – ein Verfahren mit sehr hohem Detaillierungsgrad – für deutschsprachige Texte anhand eines Projekts für die Versicherungswirtschaft vorgestellt. Es wird gezeigt, dass in Bewertungsplattformen geäußerte Meinungen zu Produkten und Services von Versicherungen mit einer Genauigkeit von etwa 90% und einer Vollständigkeit von ca. 80% für positive und ca. 60% für negative Meinungen erkannt werden können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baccianella, S./ Esuli, A./ Sebastiani, F. (2010): SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC-2010).Google Scholar
  2. Bosco, C./ Patti, V./ Bolioli, A. (2013): Developing Corpora for Sentiment Analysis: The Case of Irony and Senti-TUT. In; Intelligent Systems, IEEE, Volume: 28, Issue: 2, S. 55–63.CrossRefGoogle Scholar
  3. Carvalho, P./ Sarmento, L./ Silva, M. J./ Oliviera, E. de. (2009): Clues for Detcting Irony in User Generated Contents: Oh…!! It’s “so easy”; -). In: Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement (TSA-2009).Google Scholar
  4. Clematide, S./ Klenner M. (2010): Evaluation and Extension of a Polarity Lexicon for German. In: Proceedings of the 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA-2010).Google Scholar
  5. Hu, X./ Liu, B. (2004): Mining and Summarizing Customer Reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004).Google Scholar
  6. Kouloumpis, E./ Wilson, T./ Moore, J. (2011): Twitter sentiment analysis: The good the bad and the omg! In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media.Google Scholar
  7. Jindal, N./ Liu, B. (2006): Identifying comparative sentences in text documents. In: Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR-2006).Google Scholar
  8. Liu, Bing (2012): Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.Google Scholar
  9. Liu, B./ Hu, M./ Cheng, J. (2005): Opinion Observer: Analyzing and Comparing Opinions on the Web. In: Proceedings of the 14th International Wolrd Wide Web Conference (WWW-2005).Google Scholar
  10. Pang, B./ Lee, L./ Vaithyanathan, S. (2002): Thumbs up?: Sentiment Classification Using Machine learning Techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-2002).Google Scholar
  11. Rill, S./ Drescher, J./ Reinel, D./ Scheidt, J./ Schütz, O./ Wogenstein, F./ Simon, D. (2012a): A Generic Approach to Generate Opinion Lists of Phrases for Opinion Mining Applications. In: Proceedings of the First International Workshop of Sentiment Discovery and Opinion Mining (WISDOM). ACM.Google Scholar
  12. Rill, S./ Adolph, S./ Drescher, J./ Reinel, D./ Scheidt, J./ Schütz, O./ Wogenstein, F./ Zicari, R. V./ Korfiatis, N. (2012b): A Phrase-Based Opinion List for the German Language. In: Proceedings of the 1st Workshop on Practice and Theory of Opinion Mining and Sentiment Analysis (PATHOS).Google Scholar
  13. Rill, S./ Drescher, J./ Reinel, D./ Scheidt, J./ Wogenstein, F. (2012c): Particular Requirements on Opinion Mining for the Insurance Business. In: Proceedings of the 2nd International Conference on Advances in Information Mining and Management (IMMM).Google Scholar
  14. Takamura, H./ Inui, T./ Okumura, M. (2005): Extracting Semantic Orientations of Words using Spin Model. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005).Google Scholar
  15. Turney, P. D. (2002): Thumbs up or thumbs down?: Semantic Orientation Applied to Unsupervised Classification of Reviews. In: Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL-2002).Google Scholar
  16. Waltinger, U. (2010): GermanPolarityClues: A Lexical Resource for German Sentiment Analysis. In: Proceedings of the 7th International Conference on language Resources and Evaluation (LREC-2010).Google Scholar
  17. Wiebe, J./ Bruce, R. F./ O’Hara, T. P. (1999): Development and Use of a Gold-Standard Data Set for Subjectivity Classification. In: Proceedings of the Association for Computational Linguistics (ACL-1999).Google Scholar
  18. Wilson, T./ Wiebe, J./ Hoffmann, P. (2005): Recognizing Contextual Polarity in Phrase- Level Sentiment Analysis. In: Proceedings of the Human Language Technology Conference (HTL-2005).Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Dirk Reinel
    • 1
  • Jörg Scheidt
    • 1
  1. 1.Hochschule für Angewandte Wissenschaften Hof Institut für InformationssystemeHofDeutschland

Personalised recommendations