Advertisement

Wissenschaftliche Information für die Anwendung

  • Andreas Marx
  • Renate Treffeisen
  • Klaus Grosfeld
  • Wolfgang Hiller
  • Georg Heygster
  • Luis Samaniego
  • Rohini Kumar
  • Julia Pommerencke
  • Matthias Zink
Chapter

Zusammenfassung

Der Austausch von Wissen und Information zwischen verschiedenen gesellschaftlichen Gruppen ist oft nicht trivial. Vertreter aus der Öffentlichkeit, verschiedenen Fachkreisen und Behörden oder aus der Wissenschaft generieren sehr unterschiedliches Wissen unter Einbeziehung von unterschiedlichen Graden der Problemorientierung und in ihrer jeweiligen Sprache. Zur Überwindung dieser Barrieren stehen verschiedene Instrumente zur Verfügung. In diesem Artikel werden drei weitverbreitete Formen des Wissenstransfers diskutiert: (1) Assessments mit ihren verschiedenen Formen z. B. auf unterschiedlichen räumlichen Skalen, (2) Indikatoren mit möglichen Rahmenkonzepten, Indikatorensätze und Formen der Evaluierung und (3) web-basierte Plattformen als einfache Möglichkeit der Verbreitung von aktuellen Informationen. Dabei werde zwei Beispiele ausführlich dargestellt, nämlich das am Klimabüro für Polargebiete und Meeresspielgel konzipierte Meereisportal und der am Mitteldeutschen Klimabüro entwickelte Deutsche Dürremonitor.

Literatur

  1. [1]
    APCC. (2014). Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften, Wien, Österreich, 1096 Seiten. ISBN 978-3-7001-7699–2.Google Scholar
  2. [2]
    BACC Author Team. (2008). Assessment of climate change for the baltic sea basin. Springer, 496p. e-ISBN: 978–3–540–72786–6.CrossRefGoogle Scholar
  3. [3]
    Boetius, A. & S. Albrecht et al. (2013). “Export of algal biomass from the melting arctic sea ice.” Science, 339(6126), 1430–1432.CrossRefGoogle Scholar
  4. [4]
    BMFSFJ. (Bundesministerium für Familie, Senioren, Frauen und Jugend,1999). Zielfindung und Zielformulierung – Ein Leitfaden. Materialien zur Qualitätssicherung in der Kinder- und Jugendhilfe. http://www.univation.org/download/QS_21.pdf.
  5. [5]
    Cavender-Bares J., Sack L., & Savage J. (2007). Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. (4), 611–620.CrossRefGoogle Scholar
  6. [6]
    CEDIM. (2013, Juni 20). Juni-Hochwasser 2013 in Mitteleuropa - Fokus Deutschland. Bericht 1 – Update 2: Vorbedingungen, Meteorologie, Hydrologie. Forensic Disaster Analysis Group (FDA).Google Scholar
  7. [7]
    Ciscar, J.C., Feyen, L., Soria, A., Lavalle, C., Raes, F., Perry, M., Nemry, F., Demirel, H., Rozsai, M., Dosio, A., Donatelli, M., Srivastava, A., Fumagalli, D., Niemeyer, S., Shrestha, S., Ciaian, P., Himics, M., Van Doorslaer, B., Barrios, S., Ibáñez, N., Forzieri, G., Rojas, R., Bianchi, A., Dowling, P., Camia, A., Libertà, G., San Miguel, J., de Rigo, D., Caudullo, G., Barredo, J.-I., Paci, D., Pycroft, J, Saveyn, B, Van Regemorter, D, Revesz, T, Vandyck, T, Vrontisi, Z, Baranzelli, C., Vandecasteele, I., Batista e Silva, F., Ibarreta, D. (2014, April). Climate Impacts in Europe. The JRC PESETA II project. 26586 EN. http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=7181.
  8. [8]
    Corvalán, C., Briggs, D.J., & Kjellstrom, T. (1996). Development of environmental health indicators. In D., Briggs, C., Corvalán, & M., Nurminen, (Eds.), Linkage methods for environment and health analysis. General guidelines. Genf; UNEP, USEPA and WHO.Google Scholar
  9. [9]
    Dethloff, K., Rinke, A. et al. (2006). “A dynamical link between the Arctic and the global climate system.” Geophysical Research Letters, 33(3), L03703.Google Scholar
  10. [10]
    Döring, S., Döring, J., & Borg, H. (2011). Vergleich von Trockenheitsindizes zur Nutzung in der Landwirtschaft unter den klimatischen Bedingungen Mitteldeutschlands. Hercynia. N.F., 44, 145–168.Google Scholar
  11. [11]
    EEA. (2005). EEA core set of indicators, Technical Report 1/2005, European Environment Agency.Google Scholar
  12. [12]
    EEA. (2010). Use of freshwater resources (CSI 018/WAT 001) - Assessment published Dec 2010, abgerufen unter http://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources/use-of-freshwater-resources-assessment-2 am 03. März. 2015.
  13. [13]
    EEA. (2012). Environmental indicator report 2012, Publications Office of the European Union, Luxembourg, ISBN 978-92-9213-315-3, doi:10.2800/4874.Google Scholar
  14. [14]
    EEA. (2012). Climate change, impacts and vulnerability in Europe 2012, EEA Report No 12/2012. http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012. Zugegriffen: 12. Febr 2015.
  15. [15]
    Füssel, H.-M., & Klein, R.J.T. (2006). Climate change vulnerability assessments, Climatic Change, 75, 301–329 DOI: 10.1007/s10584-006-0329-3.CrossRefGoogle Scholar
  16. [16]
    Gautier, D. L., Bird, K. J., et al. (2009). “Assessment of undiscovered oil and gas in the arctic.” Science, 324(5931), 1175–1179.CrossRefGoogle Scholar
  17. [17]
    Harley, M., & van Minnen, J. (2009). Development of adaptation indicators. ETC/ACC Technical Paper 2009/6, http://air-climate.eionet.europa.eu/docs//ETCACC_TP_2009_6_Adaptation_Indicators.pdf.Google Scholar
  18. [18]
    Harrison, P. A., Holman, I. P., Cojocaru, G., Kok, K., Kontogianni, A., Metzger, M. J., Gramberger, M. (2013). Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Regional Environmental Change, 13, 761–780, DOI 10.1007/s10113-012-0361–y.CrossRefGoogle Scholar
  19. [19]
    Hilden, M., & Marx, A. (2013). Evaluation of climate change state, impact and vulnerability indicators, ETC CCA Technical Paper 02/2013. http://cca.eionet.europa.eu/docs/TP_2-2013.
  20. [20]
    Hambling, H., Weinstein, P., & Slaney, D. (2001). A review of frameworks for developing environmental health indicators for climate change and health. International Journal of Environmental Research and Public Health. 8(7), 2854–2875.Google Scholar
  21. [21]
    Hammond, A., Adriaanse, A., Rodenburg, E., Bryant, D., Woodward, R. (1995). Environmental indicators: A systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development. World Resources Institute, Washington DC, S. 50.Google Scholar
  22. [22]
    IMD. (2014). Experimental drought monitor. https://sites.google.com/a/iitgn.ac.in/india_drought_monitor/info. Zugegriffen: 01. Juli 2014.
  23. [23]
    IPCC. (2012). Glossary of terms. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). (S. 555–564). Cambridge University Press, Cambridge, UK, and New York, NY, USA.Google Scholar
  24. [24]
    Jaiser, R., Dethloff, K., et al. (2012) “Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation.” Tellus A, 64. Google Scholar
  25. [25]
    Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: An evaluation of drought indices. American Meteorological Society. 83, 1167–1180.CrossRefGoogle Scholar
  26. [26]
    Kjellström, T., & Corvalán, C. (1995). Framework for the development of environmental health indicators. World Health Statistics Quarterly. 48, 144–154.Google Scholar
  27. [27]
    Kumar, R., Samaniego, L., & Attinger, S. (2010). The effects of spatial discretization and model parameterization on the prediction of extreme runoff characteristics. Journal of Hydrology, 392(1–2), 54–69.CrossRefGoogle Scholar
  28. [28]
    Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resource Research, doi:10.1029/2012WR012195.Google Scholar
  29. [29]
    Niemeijer & de Groot. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, (8), 14–25.CrossRefGoogle Scholar
  30. [30]
    Maxim, L., Spangenberg, J., & O’Connor, M. (2009). An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 69, 12–23.CrossRefGoogle Scholar
  31. [31]
    Meinke, H., Nelson, R., Kokic, P., Stone, R., Selvaraju, R., Baethgen, W. (2006). Actionable climate knowledge: From analysis to synthesis. Climate Research, 33(1), 101–110.CrossRefGoogle Scholar
  32. [32]
    Meinke, I., & Gerstner, E.-M. (2009). Digitaler Norddeutscher Klimaatlas informiert über möglichen künftigen Klimawandel.– Mitteilungen DMG 3–2009, 17.Google Scholar
  33. [33]
    Meinke, I., Gerstner, E.-M., von Storch, H., Marx, A., Schipper, H., Kottmeier, Ch., Treffeisen, R., Lemke, P. (2010). „Regionaler Klimaatlas Deutschland der Helmholtz-Gemeinschaft informiert im Internet über möglichen künftigen Klimawandel“, DMG Mitteilungen, 2–2010, 5–7. http://www.dmg-ev.de/gesellschaft/publikationen/pdf/dmg-mitteilungen/2010_2.pdf. & http://www.regionaler-klimaatlas.de/.Google Scholar
  34. [34]
    Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.CrossRefGoogle Scholar
  35. [35]
    NDMC. (2014). U.S. Drought Monitor. http://drought.unl.edu/MonitoringTools/USDroughtMonitor.aspx. Zugegriffen: 01. Juli 2014.
  36. [36]
    NDMC. (2014). What is Drought? http://drought.unl.edu/DroughtBasics/WhatisDrought.aspx. Zugegriffen: 24. Juni 2014.
  37. [37]
    NDMC. (2014). Types of Drought. http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx. Zugegriffen: 01. Juli 2014.
  38. [38]
    O’Connor, M. (2007). The “four spheres” framework for sustainability. Ecological complexity, 3(4), 285–292.CrossRefGoogle Scholar
  39. [39]
    Overland, J. E. & Wang, M. (2013). When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40(10), 2097–2101.CrossRefGoogle Scholar
  40. [40]
    Pommerencke, J. (2014). Trendanalyse der Bodenfeuchte auf Basis der naturräumlichen Gliederung Deutschlands. Masterarbeit an der Universität Leipzig, S. 123.Google Scholar
  41. [41]
    Rothman, D. S., & Robinson, J. B. (1997). Growing pains: a conceptual framework for considering integrated assessments. Environmental Monitoring and Assessment, 46(1–2), 23–43.CrossRefGoogle Scholar
  42. [42]
    Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5), 1–25.CrossRefGoogle Scholar
  43. [43]
    Samaniego, L., Kumar, R., & Zink, M. (2013). Implications of parameter uncertainty on soil moisture drought analysis in Germany. Journal of Hydrometeorology, 14(1), 47–68.CrossRefGoogle Scholar
  44. [44]
    Schomaker, M. (1997). Development of environmental indicators in UNEP. In Paper presented at the land quality indicators and their use in sustainable agriculture and rural development, January 1996, (S. 35–36). Rome: FAO.Google Scholar
  45. [45]
    Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., & Vogt, J. (2012). Development of a combined drought indicator to detect agricultural drought in Europe. Natural Hazards and Earth System Science, 12(11), 3519–3531.CrossRefGoogle Scholar
  46. [46]
    Smeets, E., & Weterings, R. (1999). Environmental indicators: Typology and overview. EEA Technical report No 25. 19.Google Scholar
  47. [47]
    Stanners, D., Bosch, P., Dom, A., Gabrielsen, P., Gee, D., Martin, J., Rickard, L. and Weber, J. -L. (2007). Frameworks for environmental assessment and indicators at the EEA. In Sustainable indicators: A scientific assessment, scientific committee on problems of the environment. Island Press, London.Google Scholar
  48. [48]
    Swart, R. J., Bakkes, J. A., Niessen, L. W., Rotmans, J., de Vries, H. J. M., Weterings, R. (1995). Scanning the global environment: A framework and methodology for integrated environmental reporting and assessment. RIVM, Bilthoven. Report No. 402001002, S. 58.Google Scholar
  49. [49]
    UBA. (2011). Entwicklung eines Indikatorensystems für die Deutsche Anpassungsstrategie an den Klimawandel (DAS), online verfügbar unter http://www.uba.de/uba-info-medien/4230.html.
  50. [50]
    UBA. (2015). Monitoringbericht 2015 zur Deutschen Anpassungsstrategie an den Klimawandel. Bericht der Interministeriellen Arbeitsgruppe Anpassungsstrategie der Bundesregierung. Online verfügbar unter http://www.umweltbundesamt.de/publikationen/monitoringbericht-2015. Zugegriffen: 25. Mai 2015.
  51. [51]
    UNEP. (2004, März). Impacts of Summer 2003 Heat Wave in Europe. Environment Alert Bulletin.Google Scholar
  52. [52]
    Underwood, E. (2015). Models predict longer, deeper U.S. droughts. Science, 347(6223), 707, DOI: 10.1126/science.347.6223.707.CrossRefGoogle Scholar
  53. [53]
    U.S. EPA. (2003). Science Policy Council assessment factors: A summary of general assessment factors for evaluating the quality of scientific and technical information. EPA 100/B–03/001.Google Scholar
  54. [54]
    U.S. EPA. (2014). Climate change indicators in the United States. (3rd ed.). EPA 430-R-14-004. www.epa.gov/climatechange/indicators.
  55. [55]
    Voigt, T., & van Minnen, J. G. (2007). Proposed structure and indicators for an updated report in 2008, ETC ACC, Copenhagen.Google Scholar
  56. [56]
    Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, 110–120.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  • Andreas Marx
    • 1
  • Renate Treffeisen
    • 2
  • Klaus Grosfeld
    • 2
  • Wolfgang Hiller
    • 2
  • Georg Heygster
    • 3
  • Luis Samaniego
    • 4
  • Rohini Kumar
    • 5
  • Julia Pommerencke
    • 1
  • Matthias Zink
    • 6
  1. 1.Dept. CHSHelmholtz Zentrum für UmweltforschungLeipzigGermany
  2. 2.AWI Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhavenGermany
  3. 3.Universtiät Bremen, Institut für Umweltphysik IUPBremenGermany
  4. 4.Helmholtz Zentrum für UmweltforschungDept. CHSLeipzigGermany
  5. 5.Institut für Erd- und UmweltwissenschaftenUniversität PotsdamPotsdam-GolmGermany
  6. 6.Dept. CHSHelmholtz Zentrum für UmweltforschungLeipzigGermany

Personalised recommendations