Advertisement

Marine mammals and windfarms: Effects of alpha ventus on harbour porpoises

  • Michael Dähne
  • Verena Peschko
  • Anita Gilles
  • Klaus Lucke
  • Sven Adler
  • Katrin Ronnenberg
  • Ursula Siebert
Chapter

Abstract

Offshore windfarms have the potential to affect marine mammal populations. For harbour porpoises, the threat considered most important is the influence of noise during the construction phase. Effects of the operational period that need to be considered can be either noise effects or effects due to alteration to the habitat where foundations were erected. Visual surveys and stationary acoustic monitoring showed a strong avoidance reaction during pile-driving while during the operational period results were inconclusive. In future, these impacts must be seen in a larger framework to predict the biological significance of cumulative effects.

Keywords

Wind Turbine Marine Mammal Harbour Seal Aerial Survey Harbour Porpoise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature

  1. Betke K & Matuschek R (2011). Messungen von Unterwasserschall beim Bau der Windenergieanlagen im Offshore-Testfeld alpha ventus. Abschlussbericht zum Monitoring nach StUK3 in der Bauphase, ITAP, Oldenburg, 48 pp.Google Scholar
  2. Brandt MJ, Diederichs A, Betke K, Nehls G (2011). Responses of harbour porpoises to pile driving at the Horns Rev II offshore windfarm in the Danish North Sea. Marine Ecology Progress Series 421:205–216. doi: 10.3354/meps08888CrossRefGoogle Scholar
  3. Brandt MJ, Höschle C, Diederichs A, et al. (2013). Seal scarers as a tool to deter harbour porpoises from offshore construction sites. Marine Ecology Progress Series 475:291–302. doi: 10.3354/meps10100CrossRefGoogle Scholar
  4. Brandt MJ, Höschle C, Diederichs A, et al. (2012). Far-reaching effects of a seal scarer on harbour porpoises, Phocoena phocoena. Aquatic Conservation: Marine and Freshwater Ecosystems 23:222–232. doi: 10.1002/aqc.2311Google Scholar
  5. BSH (2007). Standard Investigations of the impacts of offshore wind turbines on the marine environment (StUK3). Bundesamt für Seeschifffahrt und Hydrographie, Hamburg and Rostock, 58 pp.Google Scholar
  6. BSH (2013). Standard Investigations of the impacts of offshore wind turbines on the marine environment (StUK4). Bundesamt für Seeschifffahrt und Hydrographie, Hamburg and Rostock, 83 pp.Google Scholar
  7. Dähne M, Gilles A, Lucke K, et al. (2013a). Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore windfarm in Germany. Environmental Research Letters 8:025002 (16pp). doi: 10.1088/1748-9326/8/2/025002CrossRefGoogle Scholar
  8. Dähne M, Verfuß UK, Brandecker A, et al. (2013b). Methodology and results of calibration of tonal click detectors for small odontocetes (C-PODs). Journal of the Acoustical Society of America 134:2514–2522. doi: 10.1121/1.4816578CrossRefGoogle Scholar
  9. Derweduen J, Vandendriesche S, Willems T, Hostens K (2012). The diet of demersal and semi-pelagic fish in the Thorntonbank windfarm: tracing changes using stomach analyses data. In: Degraer S, Brabant R, Rumes B (eds) Offshore windfarms in the Belgian part of the North Sea: Heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine ecosystem management unit., pp 73–84.Google Scholar
  10. Diederichs A, Hennig V, Nehls G (2008). Investigations of the bird collision risk and the responses of harbour porpoises in the offshore windfarms Horns Rev, North Sea, and Nysted, Baltic Sea, in Denmark Part II: Harbour porpoises (FKZ 0329963 + FKZ 0329963 A), Final Report. University Hamburg & BioConsult SH, Hamburg and Husum, 100 pp.Google Scholar
  11. Gallus A, Dähne M, Verfuß UK, et al. (2012). Use of static passive acoustic monitoring to assess the status of the “Critically Endangered” Baltic harbour porpoise in German waters. Endangered Species Research 18:265–278. doi: 10.3354/esr00448CrossRefGoogle Scholar
  12. Gilles A, Adler S, Kaschner K, et al. (2011). Modelling harbour porpoise seasonal density as a function of the German Bight environment: implications for management. Endangered Species Research 14:157–169. doi: 10.3354/esr00344.CrossRefGoogle Scholar
  13. Gilles A, Scheidat M, Siebert U (2009). Seasonal distribution of harbour porpoises and possible interference of offshore windfarms in the German North Sea. Marine Ecology Progress Series 383:295–307. doi: 10.3354/meps08020.CrossRefGoogle Scholar
  14. Hammond PS, Berggren P, Benke H, et al. (2002) Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. Journal of Applied Ecology 39:361–376.CrossRefGoogle Scholar
  15. Hammond PS, Macleod K, Berggren P, et al. (2013). Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biological Conservation 164:107–122. doi: 10.1016/j.biocon.2013.04.010.CrossRefGoogle Scholar
  16. Hansen S, Höschle C, Diederichs A, et al. (2013). Offshore-Testfeld alpha ventus Fachgutachten Meeressäugetiere 2. Untersuchungsjahr der Betriebsphase (Januar–Dezember 2011). IfAÖ und BioConsult SH, Husum, 87 pp.Google Scholar
  17. Herr H, Scheidat M, Lehnert K, Siebert U (2009). Seals at sea: modelling seal distribution in the German bight based on aerial survey data. Marine Biology 156:811–820. doi: 10.1007/s00227-008-1105-x.CrossRefGoogle Scholar
  18. Kyhn LA, Tougaard J, Thomas L, et al. (2012). From echolocation clicks to animal density – Acoustic sampling of harbor porpoises with static dataloggers. Journal of the Acoustical Society of America 131:550–560. doi: 10.1121/1.3662070.CrossRefGoogle Scholar
  19. Lucke K, Siebert U, Lepper P a, Blanchet M-A (2009). Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. Journal of the Acoustical Society of America 125:4060–70. doi: 10.1121/1.3117443-CrossRefGoogle Scholar
  20. Madsen P, Wahlberg M, Tougaard J, et al. (2006). Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Marine Ecolology Progress Series 309:279–295.CrossRefGoogle Scholar
  21. Van Polanen Petel T, Geelhoed S, Meesters E (2012). Harbour porpoise occurrence in relation to the Prinses Amaliawindpark. Report Number C177/10, Imares, Wageningen, 34 pp.Google Scholar
  22. R Development Core Team (2012). R: A language and environment for statistical computing. Google Scholar
  23. Rigby RA & Stasinopoulos DM (2005). Generalized additive models for location, scale and shape,(with discussion). Applied statistics 54:507–554.Google Scholar
  24. Scheidat M, Tougaard J, Brasseur S, et al. (2011). Harbour porpoises (Phocoena phocoena) and windfarms: a case study in the Dutch North Sea. Environmental Research Letters 6:025102. doi: 10.1088/1748-9326/6/2/025102.CrossRefGoogle Scholar
  25. Scheidat M, Verdaat H, Aarts G (2012). Using aerial surveys to estimate density and distribution of harbour porpoises in Dutch waters. Journal of Sea Research 69:1–7. doi: 10.1016/j.seares. 2011.12.004.CrossRefGoogle Scholar
  26. Teilmann J & Carstensen J (2012). Negative long-term effects on harbour porpoises from a large scale offshore windfarm in the Baltic – Evidence of slow recovery. Environmental Research Letters 7:045101 (10 pp). doi: 10.1088/1748-9326/7/4/045101.CrossRefGoogle Scholar
  27. Thomas L, Buckland ST, Rexstad EA, et al. (2010.) Distance software: design and analysis of distance sampling surveys for estimating population size. The Journal of Applied Ecology 47:5–14. doi: 10.1111/j.1365-2664.2009.01737.x.CrossRefGoogle Scholar
  28. Tougaard J, Carstensen J, Teilmann J, et al. (2009a). Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L.)). Journal of the Acoustical Society of America 126:11–14. doi: 10.1121/1.3132523.CrossRefGoogle Scholar
  29. Tougaard J, Henriksen O, Miller L (2009b). Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. Journal of the Acoustical Society of America 125:3766–3773. doi: 10.1121/1.3117444.CrossRefGoogle Scholar
  30. TSEG (Trilateral Seal Expert Group) (2013). Aerial surveys of Harbour Seals in the Wadden Sea in 2013. Trilateral Seal Expert Group, Wilhelmshaven 3 pp. http://www.waddensea-secretariat.org/sites/default/files/downloads/TMAP_downloads/Seals/aerial_surveys_of_harbour_seals_in_the_wadden_sea_in_2013.pdf, accessed 05.02.2014.Google Scholar
  31. Verfuß UK, Dähne M, Gallus A, et al. (2013). Determining the detection thresholds for harbor porpoise clicks of autonomous data loggers, the Timing Porpoise Detectors. Journal of the Acoustical Society of America 134:2462–2468. doi: 10.1121/1.4816571.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Michael Dähne
    • 2
  • Verena Peschko
    • 2
  • Anita Gilles
    • 2
  • Klaus Lucke
    • 3
  • Sven Adler
    • 1
  • Katrin Ronnenberg
    • 2
  • Ursula Siebert
    • 2
  1. 1.Swedish University of Agricultural SciencesUmeåSweden
  2. 2.University of Veterinary Medicine Hannover, FoundationInstitute for Terrestrial and Aquatic Wildlife ResearchBüsumGermany
  3. 3.IMARES Wageningen URAD Den BurgNetherlands

Personalised recommendations