Tomáš Havránek

  • Jaromír Antoch
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Tomáš Havránek was born in Prague in the family of well known bohemist academician B. Havránek. His carrier started in 1972 just after finishing Charles University and fulfilling military service. The first job has been that of statistician — consultant in the Institute of Microbiology of the Czechoslovak Academy of Sciences. Here he split interests into the two parts, the routine statistical analysis of biological data and his own scientific problems. And on this place he has found a lot of ideas for books, papers and lectures which followed soon.


Contingency Table Model Choice Czechoslovak Academy Model Search Necker Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. [1]
    Havránek T. and Hájek P., Mechanizing hypotheses formation — mathematical foundations of a general theory, Universitexte, Springer-Verlag, Heidelberg, 1978.Google Scholar
  2. [2]
    Havránek T., Albrecht V., Dvořák I., Jirků P. and Louvar B., Matematika pro biologické a lékařské vědy (Mathematics for biological and medical sciences), Academia, Praha, 1981.Google Scholar
  3. [3]
    Havránek T. and Hájek P., Avtomaticeskoe obrazovanie gipotez, Nauka, Moskva, 1984. (Russian translation of [1].)Google Scholar
  4. [4]
    Havránek T., Hájek P. and Jiroušek R., Processing uncertain information in expert systems, RC Press, Boca Raton (to appear).Google Scholar
  5. [5]
    Havránek T., Statistika pro biologické a lékařské vědy (Statistics for biological and medical sciences), Academia, Praha (to appear). Articles (excluding technical reports)Google Scholar

Articles (excluding technical reports)

  1. [6]
    Havránek T., The statistical interpretation and modification of GUHA method, Kybernetika 7 (1971), 13–21.MathSciNetzbMATHGoogle Scholar
  2. [7]
    Havránek T., A generalization of the propositional calculus for purposes of the theory of logical nets with probabilistic elements, Kybernetika 10 (1974), 13–43.MathSciNetzbMATHGoogle Scholar
  3. [8]
    Havránek T., Statistical quantifiers in observational calculi, Theory and Decision 6 (1975), 213–230.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [9]
    Havránek T., Statistics and computability, Kybernetika 12 (1976), 303–315.MathSciNetzbMATHGoogle Scholar
  5. [10]
    Havránek T., Some aspects of automatic systems of statistical inference, Transactions of 1974 European Meeting of Statisticians, vol. A, Academia, Praha, 1977, pp. 221–229.Google Scholar
  6. [11]
    Havránek T. and Hájek P., On generation of inductive hypotheses, Int. J. of Man-Machine Studies 9 (1977), 415–438.zbMATHCrossRefGoogle Scholar
  7. [12]
    Havránek T., Towards a model theory of statistical theories, Synthese 36 (1977), 441–458.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [13]
    Havránek T. and Hájek P., The GUHA method, its aims and techniques, Int. J. of Man-Machine Studies 10 (1978), 3–22.zbMATHCrossRefGoogle Scholar
  9. [14]
    Havránek T. and Pokorný D., GUHA — style processing of mixed data, Int. J. of Man-Machine Studies 10 (1978), 47–57.zbMATHCrossRefGoogle Scholar
  10. [15]
    Havránek T. and Pokorný D., On some procedures for identifying sources of dependence in contingency tables, COMPSTAT 78, Physica-Verlag, Wien, pp. 221–227.Google Scholar
  11. [16]
    Havránek T., On control of computer packages for data analysis, The 2nd IFIP/IFAC Symp. on Software for Computer Control (Novák M., ed.), Pergamon Press, New York, 1979, pp. 300–307.Google Scholar
  12. [17]
    Havránek T., Approximate distribution of the maximum of 2×2 statistics derived from an R×C contingency table, Proceedings of the Second Prague Symposium on Asymptotic Statistics, North Holland, Amsterdam, 1979, pp. 212–219.Google Scholar
  13. [18]
    Havránek T., Radilová J. and Radil T., A quantitative description of perception of the Necker cube, Physiologia Bohemoslovaca 22 (1979), 427–428.Google Scholar
  14. [19]
    Havránek T., Alternative approach to missing information in the GUHA method, Kybernetika 16 (1980), 145–155.MathSciNetzbMATHGoogle Scholar
  15. [20]
    Havránek T., Some comments on GUHA procedures, Explorative Datenanalyse, Medizinische Informatik und Statistik (Victor N., Lehmacher W. and van Eimeren W., eds.), vol. 26, Springer-Verlag, Heidelberg, 1980, pp. 156–177.Google Scholar
  16. [21]
    Havránek T., The present state of the GUHA software, Int. J. Man-Machine Studies 15 (1981), 253–264.CrossRefGoogle Scholar
  17. [22]
    Hájek P. and Havránek T., GUHA — 80. An application of artificial intelligence to data analysis, Computer and Artificial Intelligence 1 (1982), 107–134.Google Scholar
  18. [23]
    Havránek T., On GUHA procedures for multidimensional contingency tables, XI. Conf. Int. de Biometrie, Toulouse, 1982, pp. 41.Google Scholar
  19. [24]
    Havránek T., Some complexity considerations concerning hypotheses in multidimensional contingency tables, Trans. 9th Prague Conf. on Inf. Theory, Statist. Dec. Functions and Random Processes, Academia, Praha, 1983, pp. 281–286.Google Scholar
  20. [25]
    Havránek T. and Hájek P., Logic, statistics and computers, Logic in the 20th Century, Scientia, Milano, 1983, pp. 56–76.Google Scholar
  21. [26]
    Havránek T. and Chytil M., Mechanizing hypothesis formationway for computerized exploratory data analysis, Bull. Int. Statistist. Institute 44th ISI Meeting, Madrid, 1983, pp. 104–121.Google Scholar
  22. [27]
    Havránek T., Lane P., Molenaar I., Nelder J. A., Tiit E.M., Verbeek A. and Victor N., Standard packages versus tailor made software — panel discussion at COMPSTAT84, Statistical Software Newsletter 10 (1984), 56–57.Google Scholar
  23. [28]
    Havránek T., A note on the rank monotone dependence function, Statistics 15 (1984), 369–372.zbMATHGoogle Scholar
  24. [29]
    Havránek T., A procedure for model search in multidimensional contingency tables, Biometrics 40 (1984), 95–100.CrossRefGoogle Scholar
  25. [30]
    Havránek T. and Lienert G. A., Local and regional vs. global contingency testing, Biom. J. 26 (1984), 483–494.zbMATHCrossRefGoogle Scholar
  26. [31]
    Havránek T., Radilová J. and Radii T., Sequential dependences of perceptual interpretations of a repetitively illuminated reversible figure, Int. J. Psychophysiology 2 (1984), 45–50.CrossRefGoogle Scholar
  27. [32]
    Havránek T. and Jirků P., A note on verbosity levels in cognitive problem solvers, Computer and Artificial Intelligence 4 (1985), 15–20.Google Scholar
  28. [33]
    Havránek T. and Edwards D., A fast procedure for model search in multidimensional contingency tables, Biometrika 72 (1985), 339–351.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [34]
    Havránek T. and Pokorný D., On the GUHA approach to model search in connection to generalized linear models, Generalized Linear Models, Lecture Notes in Statistic, vol. 32, Springer-Verlag, Heidelberg, 1986, pp. 82–92.Google Scholar
  30. [35]
    Havránek T. and Lienert G. A., Remission control of pre-post treatment comparisons by two-sample symmetry testing, Methods of Information in Medicine 25 (1986), 116–122.Google Scholar
  31. [36]
    Havránek T., On general algorithm for model choice in multivariate analysis, Proc. 7th Int. Summer School on Problems of Model Choice and Parameter Estimation in Regression Analysis, Sekt. Math. der Humboldt Univ., Berlin, 1986, pp. 88–98.Google Scholar
  32. [37]
    Havránek T. and Lienert G.A., Pre-post treatment evaluation by symmetry testing in square contingency table, Biometrical Journal 28 (1986), 927–935.zbMATHCrossRefGoogle Scholar
  33. [38]
    Havránek T. and Edwards D., A fast model selection procedure for large families of models, Journal of the Amer. Statist. Assoc. 82 (1987), 205–213.zbMATHCrossRefGoogle Scholar
  34. [39]
    Havránek T. and Edwards D., On variable selection and model choice in multivariate analysis, DIANA II, MÚ ČSAV, Praha, 1987, pp. 161–174.Google Scholar
  35. [40]
    Havránek T. and Hájek P., A note on the independence assumption underlying subjective Bayesian updation in expert systems, Artificial Intelligence and Information Control Systems of Robots, Elsevier, Amsterdam, 1987, pp. 41–47.Google Scholar
  36. [41]
    Havránek T., Model search in large model families, Proceedings of the First World Congress of the Bernoulli Society, vol. 2, VNV Press, Utrecht, 1987, pp. 327–338.Google Scholar
  37. [42]
    Havránek T., Model search methods for contingency tables and intensional expert systems, Trans. 10th Prague Conf. on Inf. Theory, Statist. Dec. Functions and Random Processes, Academia, Praha, 1988, pp. 375–384.Google Scholar
  38. [43]
    Havránek T., Comment on Streitberg’s remarks on artificial intelligence in statistics, Statistical Software Newsletter 14 (1988), 70–71.Google Scholar
  39. [44]
    Havránek T., On general algorithm for model choice in multivariate analysis, Statistics 19 (1988), 465–476.MathSciNetCrossRefGoogle Scholar
  40. [45]
    Havránek T. and Strakoš Z., On practical experience with parallel processing of linear models, Bulletin of the International Statistical Institute 53 (1989), 105–117.Google Scholar
  41. [46]
    Havránek T. and Soudsky O., Model choice in the context of simultaneous inference, Statistical Data Analysis and Inference (Dodge Y., ed.), Elsevier, Amsterdam, 1989, pp. 165–176.Google Scholar
  42. [47]
    Havránek T., On Model Search Methods, COMPSTAT90 (Momirovič K. et Mildner V., eds.), Physica-Verlag, Heidelberg, 1990, pp. 101–108.Google Scholar
  43. [48]
    Havránek T. and Jirků P., Constructing an experimental expert system for exploratory data analysis, Computational Statistics Quartely 5 (1990), 283–297, Physica-Verlag, Heidelberg.zbMATHGoogle Scholar
  44. [49]
    Havránek T., Parallelization and symbolic computation techniques in model search, SofStat 91, Gustav Fisher-Verlag, 1991, pp. 1–9.Google Scholar

Copyright information

© Physica-Verlag Heidelberg 1993

Authors and Affiliations

  • Jaromír Antoch
    • 1
  1. 1.Department of Mathematical Statistics and ProbabilityCharles UniversityPrague 8CSFR

Personalised recommendations