Advertisement

Abstract

One of the major problems of plant physiology is the question why it is that chlorophyll, rather than some other pigment, is used for photosynthesis. This question is clearly stated in the following quotation from Franck (1955):

“Is there a special property of the absorption spectrum and of the molecular structure of chlorophyll which gives us an indication as to why this dye is unique in the promotion of the photochemical reactions of photosynthesis ? Do these offer us a plausible explanation as to how the energy of two quanta can be utilized for the transfer of one hydrogen atom ? How is the high concentration of chlorophyll in the chloroplasts prevented from inducing the excessive and damaging oxidation processes which it can promote in the presence of oxygen when dissolved in organic solvents ? Is this potentially damaging behavior prevented by the position of the chlorophyll molecule at the interface between protein and lipoid?

Studies of the absorption spectra of chlorophyll in vivo and in vitro, measurements of its fluorecence and chemi- luminescence spectrum under a variety of external conditions, application of chemical kinetics to the photochemical reactions of photosynthesis and of other photochemical processes involving chlorophyll- these are obviously means of getting some information on our problems.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatare

  1. Arnold, W., and E. S. Meek: The polarization of fluorescence and energy transfer in grana. Arch. Biochem. 60, 82–90 (1956).PubMedGoogle Scholar
  2. *Aronoff, S.: Chlorophyll. Bot. Review 16, 525–588 (1950).Google Scholar
  3. Aronoff, S.: Light absorption of chlorophyll at high concentrations. Plant Physiol. 27, 413–416 (1952).PubMedGoogle Scholar
  4. *Aronoff, S.: The chemistry of chlorophyll. This volume, part 1 pp. 234–251. 1960.Google Scholar
  5. Bannister, T. T.: Energy transfer between chromophore and protein in phycocyanin. Arch. Biochem. 49, 222–233 (1954.)PubMedGoogle Scholar
  6. Barer, R.: Spectrophotometry of clarified cell suspensions. Science 121, 709–715 (1955).PubMedGoogle Scholar
  7. Bateman, J. B., and G. W. Monk: Spectral absorption of turbid systems using diffuse light. Science 121, 441–442 (1955).PubMedGoogle Scholar
  8. Becker, R. S., and M. Kasha: Luminescence spectroscopy of porphyrin- like molecules including the chlorophylls. J. Amer. chem. Soc. 77, 3669 (1955).Google Scholar
  9. Billings, W.D., and R. J.Morkis: Reflection of visible and infrared radiation from leaves of different ecological group. Amer. J. Bot. 38, 327–331 (1951).Google Scholar
  10. *Blinks, L. R.: The photosynthetic function of pigments other than chlorophyll. Ann. Rev. Plant Physiol. 5, 93–111 (1954).Google Scholar
  11. *Blinks, L. R.: The role of accessory pigments in photosynthesis. Symposium on autotrophic micro-organisms Soc. of Gen. Microbiol., Cambridge Univ. Press 1954.Google Scholar
  12. Bowen, E. J.: Resonance transfer of energy between molecules, pp. 152–159. In: Carbon dioxide fixation and photosynthesis. New York: Acad. Press 1951.Google Scholar
  13. Brody, M., and R. Emerson: The quantum yield of photosynthesis in Porphyridium cruentum and the role of chlorophyll a in the photosynthesis of red algae. J. gen. Physiol. 43, 251–264 (1959).PubMedGoogle Scholar
  14. Brody, S. S.: New excited state of chlorophyll. Science 178, 838–839 (1958).Google Scholar
  15. Bücher, T., u. J. Kaspers: Photochemische Spaltung des Kohlenoxydmyoglobins durch ultraviolette Strahlung. (Wirksamkeit der durch die Proteinkomponente des Pigments absorbierten Quanten.) Biochim. biophys. Acta 1, 21–34 (1947).Google Scholar
  16. Butler, W. L., and K. H. Norris: The spectrophotometry of dense, light-scattering material. In press (1959).Google Scholar
  17. Chance, B., and R. Sager: Oxygen and light induced oxidations of cytochrome, flavoprotein and pyridine nucleotides in a Chlamydomonas mutant. Plant Physiol. 32, 548–561 (1957).PubMedGoogle Scholar
  18. Chance, B., and L. Smith: In: Research in photosynthesis. Papers and Discussions Presented at Gatlinburg Conference 1955. New York: Interscience 1957.Google Scholar
  19. Chance, B., and B. Strehler: Effects of oxygen and red light upon the absorption of visible light in green plants. Plant Physiol. 32, 536–548 (1957).PubMedGoogle Scholar
  20. Coleman, J. W., A. S. Holt and E. Rabinowitch: Reversible bleaching of chlorophyll in vivo. Science 123, 795–796 (1956).PubMedGoogle Scholar
  21. Comar, C. L., and F. P. Zscheilb: Analysis of plant extracts for chlorophylls a and b by a photoelectric spectrophotometric method. Plant Physiol. 17, 198–209 (1942).PubMedGoogle Scholar
  22. Dhébé, C.: Progrès récents en spectrochimie de fluorescence des produits biologiques. Fortschr. Chem. organ. Naturstoffe 6, 311–356 (1950).Google Scholar
  23. Dutton, H. J., and W. M. Manning: Evidence for a carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Amer. J. Bot. 28, 516–526 (1947).Google Scholar
  24. Button, H. J., W. M. Manning and B. M. Duggar: Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. physic. Chem. 47, 308–313 (1943).Google Scholar
  25. *Duysens, L. N. M.: The transfer of excitation energy in photosynthesis. Thesis, Utrecht 1952.Google Scholar
  26. Duysens, L. N. M.: Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature (Lond.) 173, 692–693 (1954).Google Scholar
  27. Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120, 353–354 (1954).Google Scholar
  28. Reversible changes in the absorption spectra of Rhodospirillum and Chlorella on irradiation. Carnegie Inst. Wash. Yearbook 53, 166–168 (1954).Google Scholar
  29. Role of cytochrome and pyridine nucleotides in algal photosynthesis. Science 121, 210–211 (1955).Google Scholar
  30. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. biophys. Acta 19, 1–12 (1956a).Google Scholar
  31. *Duysens, L. N. M.: Energy transformations in photosynthesis. Ann. Rev. Plant Physiol. 7, 25–50 (1956b).Google Scholar
  32. Duysens, L. N. M., W. J. Huiskamp, J. J. Vos and J. M. van der Hart: Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim. biophys. Acta 19, 188–190 (1956c).Google Scholar
  33. Egle, K.: Über den physikalisch-chemischen Verteilungszustand des Chlorophylls in lebenden Plastiden. Ber. dtsch. bot. Ges. 66, 179–182 (1953).Google Scholar
  34. Emerson, R., and C. M. Lewis: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Amer. J. Bot. 30, 165–178 (1943).Google Scholar
  35. Evstigneev, V. B., and V. A. Gavrilova: Spectral properties of reduced forms of chlorophyll a and b. Dokl. Akad. Nauk SSSR. 91, 899–902 (1953) [Russian].PubMedGoogle Scholar
  36. The first stage of photoreduction of chlorophyll. Dokl. Akad. Nauk SSSR. 95, 841–844 (1954a) [Russian].Google Scholar
  37. The photoreduction of pheophytins a and b. Dokl. Akad. Nauk SSSR. 96, 1201–1204 (1954b) [Russian].Google Scholar
  38. Oxidation-reduction properties of chlorophylls a and b. Dokl. Akad. Nauk SSSR. 100, 131–134 (1955) [Russian].Google Scholar
  39. Forster, L., and R. Livingston: Absolute quantum yields of fluorescence of chlorophyll solutions. J. chem. Phys. 20, 1315–1320 (1952).Google Scholar
  40. *Förster, T.: Fluoreszenz organischer Verbindungen. Göttingen 1951.Google Scholar
  41. *Franck, J.: The relation of the fluorescence of chlorophyll to photosynthesis, pp. 293–348. In: Photosynthesis in plants. Ames, Iowa: Iowa State Coll. Press 1949.Google Scholar
  42. *Franck, J.: The physical background of photosynthesis, pp. 160–175. In: Carbon dioxide fixation and photosynthesis. New York: Acad. Press 1951.Google Scholar
  43. Franck, J.: Physical problems of photosynthesis. Rumford Medical Lecture 1955, Daedalus: Proc. Amer. Acad. Arts Sci. 86, 17–42 (1955).Google Scholar
  44. In: Research in photosynthesis. Papers and Discussions Presented at the Gatlinburg Conference 1955. New York: Interscience 1957.Google Scholar
  45. Franck, J., C. S. French and T. T. Puck: The fluorescence of chlorophyll and photosynthesis. J. phys. Chem. 45, 1268–1300 (1941).Google Scholar
  46. Freed, S., and K. M. Sancier: Solvates of chlorophylls and related substances and their equilibria. J. Amer. chem. Soc. 76, 198–205 (1954).Google Scholar
  47. *French, C. S.: Fluorescence spectrophotometry of photosynthetic pigments, pp. 51–74. In: The luminescence of biological systems. Amer. Assoc. for the Adv. of Sci., Wash. D.C. 1955.Google Scholar
  48. Derivative spectrophotometry. Proc. I. S. A. Instrument and control symposium, Northern California Section, Instrument Society of Am. Berkeley, Cal. 1957, pp. 83–94.Google Scholar
  49. Various forms of chlorophyll in plants. In: The Photochemical Apparatus, pp.65–73. Brookhaven Symposium, Upton N. Y. 1959.Google Scholar
  50. Variability of chlorophyll in plants, pp. 52–64. In: Photobiology. 19th Annual Biology Colloquium, 1958, Corvallis, Oregon 1959.Google Scholar
  51. French, C. S., and R. F. Elliott: The absorption spectra of chlorophylls in various algae. Carnegie Inst. Wash. Yearbook 57, 278–286 (1958).Google Scholar
  52. French, C. S., J. H. C. Smith, H. I. Virgin and R. L. Airth: Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins, and hypericin. Plant Physiol. 31, 369–374 (1956).PubMedGoogle Scholar
  53. *French, C. S., and V. K. Young: The absorption, action, and fluorescence spectra of photosynthetic pigments in living cells and in solutions, pp. 343–391. In: Radiation biology, Vol. 3. New York: McGraw Hill Co. 1956.Google Scholar
  54. French, C. S., and V. K. Young: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. gen. Physiol. 35, 873–890 (1952).PubMedGoogle Scholar
  55. Giese, A. T., and C. S. French: The analysis of overlapping absorption bands by derivative spectrophotometry. Appl. Spectroscopy 9, 78–96 (1955).Google Scholar
  56. Goedheer, J. C.: Chlorophyll spectra and molecular structure. Nature (Lond.) 176, 928–929 (1955).Google Scholar
  57. Harris, D. G., and F. P. Zscheile: Effects of solvent upon absorption spectra of chlorophylls a and b; their ultraviolet absorption in ether solution. Bot. Gaz. 104, 515–527 (1943).Google Scholar
  58. *Haxo, F. T., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedGoogle Scholar
  59. Holt, A. S.: In: Research in photosynthesis. Papers and Discussions Presented at the Gatlinburg Conference 1955. New York: Interscience 1957.Google Scholar
  60. The phase test intermediate and the allomerization of chlorophyll a. Canad. J. Biochem. 36, 436–459 (1958).Google Scholar
  61. Holt, A. S., and E. E. Jacobs: Spectroscopy of plant pigments. I. Ethyl chlorophyllides a and b and their pheophorbides. Amer. J. Bot. 41, 710–717 (1954).Google Scholar
  62. Infrared absorption spectra of chlorophylls and derivatives. Plant Physiol. 30, 553–559 (1955).Google Scholar
  63. Jacobs, E. E., A. S. Holt, R. Kbumhout and E. Rabinowitch: Spectroscopic properties of crystals and monolayers of chlorophyll and related compounds. Arch. Biochem. 7, 495–511 (1957).Google Scholar
  64. Jacobs, E. E., A. E. Vattbb and A. S. Holt: Crystalline chlorophyll and bacteriochlorophyll. Arch. Biochem. 53, 228–238 (1954).PubMedGoogle Scholar
  65. Kautsky, H., u. A. Hirsch: Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19, 964 (1931).Google Scholar
  66. Kok, B.: Light induced absorption changes in photosynthetic organisms. Acta bot. neerl. 6, 316–336 (1957a).Google Scholar
  67. Changes of absorption spectrum induced by illumination, and their bearing on the nature of the photoreceptor of photosynthesis. Atti del 20 Congr. Internat. di Photobiologia, Turin 1957, pp. 370–384.Google Scholar
  68. Koski, V. M., C. S. French and J. H. C. Smith: The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and albino com seedlings. Arch. Biochem. 31, 1–17 (1951).PubMedGoogle Scholar
  69. Koski, V. M., and J. H. C. Smith: The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J. Amer. chem. Soc. 70, 3558–3562 (1948).Google Scholar
  70. *Krasnovskii, A. A.: Participation of pigments in photosynthetic reactions of plants. Izv. Akad. Nauk SSSR., Ser. Biol. 2, 122–132 (1955) [Russian].PubMedGoogle Scholar
  71. Krasnovskh, A. A., and G. P. Brin: On the nature of the activating influence of bases on the reaction of reversible photochemical reduction of chlorophyll and pheophytin. Dokl. Akad. Nauk SSSR. 89, 527–530 (1953) [Russian].Google Scholar
  72. Krasnovskh, A.A., and L. Kosobutskaya: Spectral investigation of chlorophyll during its formation in plants and in colloidal solutions of material from etiolated leaves. Dokl. Akad. Nauk SSSR. 85, 177–180 (1952) [Russian].Google Scholar
  73. Active form of chlorophyll in colloidal solutions of green leaf substance and its reversible photochemical transformation. Dokl. Akad. Nauk SSSR. 104, 440–443 (1955) [Russian].Google Scholar
  74. Krasnovskh, A. A., and K. K. Voinovskaya: Reversibility of the photochemical reduction and oxidation of bacteriochlorophyll and bacteriopheophytin. Dokl. Akad. Nauk SSSR. 81, 879–882 (1951) [Russian].Google Scholar
  75. Latimer, P.: Fluorescence and scattering of light by plant pigments. Thesis (133 pp.) Univ. of Ill., Urbana, Ill. 1956.Google Scholar
  76. Apparent shifts of absorption bands of cell suspensions caused by optical effects. Carnegie Inst. Wash. Yearbook 56, 259–266 (1957).Google Scholar
  77. Apparent shifts of absorption bands of cell suspensions and selective light scattering. Science 127, 29–30 (1958).Google Scholar
  78. Latimer, P., T. T. Bannister and E. Rabinowitch: Quantum yield of fluorescence of plant pigments. Science 124, 585–586 (1956).PubMedGoogle Scholar
  79. Latimer, P., and E. Rabinowitch: Selective scattering of light by pigment containing plant cells. Papers and Discussions Presented at the Gatlinburg Conference 1955 (Research in Photosynthesis). New York: Interscience 1957. Also in J. chem. Phys. 24, 480 (1956).Google Scholar
  80. Linschttz, H.: Research in photosynthesis. Papers and Discussions Presented at the Gatlinburg Conference 1955. New York: Interscience 1957.Google Scholar
  81. Linschitz, H., and J. Rennert: Reversible photo-bleaching of chlorophyll in rigid solvents. Nature (Lond.) 169, 193 (1952).Google Scholar
  82. Linschitz, H., and K. Sarkanen: The absorption spectra and decay constants of the metastable states of chlorophyll a and b. J. Amer. chem. Soc. 80, 4826–4832 (1958).Google Scholar
  83. Livinqston, R.: The photochemistry of chlorophyll, pp.179–196. In: Photosynthesis in plants. Ames, Iowa: Iowa State Coll. Press 1949.Google Scholar
  84. Preliminary study of a metastable form of chlorophyll in fluid solutions. J. Amer. chem. Soc. 77, 2179–2182 (1954).Google Scholar
  85. Research in photosynthesis. Papers and Discussions Presented at the Gatlinburg Conference 1955. New York: Interscience 1957.Google Scholar
  86. *Livingston, R.: Final Report on Contract N 6 ori-212 T. O. I.: Project 051028. 1956a.Google Scholar
  87. Livingston, R., and E. Fujimori: Some properties of the ground triplett state of chlorophyll and related compounds. J. Amer. chem. Soc. 80, 5610–5613 (1958).Google Scholar
  88. Livingston, R., R. Parker, L. Thompson and A. Weller: Absorption spectra of solutions of pheophytin a in methanol containing acid or base. J. Amer. chem. Soc. 75, 3025 (1953).Google Scholar
  89. *Lumry, R., J. D. Spikes and H. Eyring: Photosynthesis. Ann. Rev. Plant Physiol. 5, 271–340 (1954).Google Scholar
  90. Lundegårdh, H.: On the oxidation of cytochrome f by light. Physiol. Plantarum (Copenh.) 7, 375–382 (1954).Google Scholar
  91. Lynch, V. H., and C. S. French: Changes in chlorophyll absorption spectra caused by light. Carnegie Inst. Wash. Yearbook 54, 166–167 (1955).Google Scholar
  92. Mac Kinney, G.: Criteria for purity of chlorophyll preparations. J. biol. Chem. 132, 91–109 (1940).Google Scholar
  93. Manning, W. M., and H. H. Strain: Chlorophyll d, a green pigment of red algae. J. biol. Chem. 151, 1–19 (1943).Google Scholar
  94. Mc Alister, E. D., and J. Myers: The time course of photosynthesis and fluorescence observed simultaneously. Smithsonian Misc. Coll. 99, 1–37 (1940).Google Scholar
  95. *Ment, J. de: Fluorochemistry. Brooklyn: Chem. Publ. Co. 1945.Google Scholar
  96. Mestrb, H.: The investigation of the pigments in the living photosynthetic cell, pp. 170–187. In: Contributions to marine biology. Stanford Univ. Press 1930.Google Scholar
  97. The absorption of radiation by leaves and algae. Cold Spr. Harb. Symp. quant. Biol. 3, 191–209 (1935).Google Scholar
  98. Milner, H. W. (Translator): Russian papers on photochemistry and photosynthesis. (About 175 articles.) Translation Center. Crearar Library, Chicago.Google Scholar
  99. Moss, R. A., and W. E. Looms: Absorption spectra of leaves. I. The visible spectrum. Plant Physiol. 27, 370–391 (1952).PubMedGoogle Scholar
  100. *Niel, C. B. van: The chemoautotrophic and photosynthetic bacteria. Ann. Rev. Microbiol. 8, 105–132 (1954).Google Scholar
  101. *Pirson, A.: Stoffwechsel organischer Verbindungen (Photosynthese). Fortschr. Bot. 17, 529–577 (1955).Google Scholar
  102. *Pringsheim, P.: Fluorescence and phosphorescence. New York: Interscience 1949.Google Scholar
  103. Rabideau, G. S., C. S. French and A. S. Holt: The absorption and reflection spectra of leaves, chloroplast suspensions and chloroplast fragments as measured in an Ulbricht sphere. Amer. J. Bot. 33, 769–777 (1946).Google Scholar
  104. *Rabinowitch, E. I.: Photosynthesis. Ann. Rev. Plant Physiol. 3, 229–264 (1952).Google Scholar
  105. *Rabinowitch, E. I.: Photosynthesis and related Processes. New York: Interscience I, 1–599 (1945); II, 1, 603–1208 (1951); II, 2, 1211–2088 (1956).Google Scholar
  106. *Rabinowitch, E I. (Translator): Fluorescence and photochemistry of chlorophyll; Papers of A. A. Krasnovskh, V. B. Evstigneev and co-workers. U. S. Atomic Energy Comm., Tech. Inf. Ext., Oak Ridge, Tenn. Available from Office of Tech. Serv. Dept. of Comm., Wash. 25, D. C. (1956b).Google Scholar
  107. Rosenberg, J. L.: Photochemistry of chlorophyll. Ann. Rev. Plant Physiol. 8, 115–136 (1957).Google Scholar
  108. *Seybold, A., u. A. Weissweiler: Weitere spektrophotometrische Messungen an Laubblättern und an Chlorophyll-Lösungen sowie an Meeresalgen. Bot. Archiv 44, 102–153 (1942).Google Scholar
  109. Shibata, K.: Spectral measurements of true absorption and reflection of translucent materials. Carnegie Inst. Wash. Yearbook 55 (1956a).Google Scholar
  110. Absorption spectra of suspensions of carotenoid crystals. Biochem. biophys. Acta 22, 398–399 (1956b).Google Scholar
  111. Spectroscopic studies on chlorophyll formation in intact leaves. Carnegie Inst. Wash. Yearbook 55 (1956) and with more detail in J. Biochem. (Tokyo) 44, 147–173 (1957a).Google Scholar
  112. A simple absolute method for measuring diffuse reflectance spectra. J. opt. Soc. Amer. 1957.Google Scholar
  113. *Spectrophotometry of intact biological materials. J. Biochem. (Tokyo) 45, 599–623 (1958).Google Scholar
  114. Shibata, K., A. A. Benson and M. Calvin: The absorption spectra of suspensions of living organisms. Biochim. biophys. Acta 15, 461–470 (1954).PubMedGoogle Scholar
  115. Shull, C. A.: A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz. 87, 583–607 (1929).Google Scholar
  116. Smith, J. H. C., and A. Benitez: The protochlorophyll- chlorophyll transformation: the nature of protochlorophyll in leaves. Carnegie Inst. Wash. Yearbook 52, 149–153 (1953).Google Scholar
  117. *Smith, J. H. C., and A. Benitez: Chlorophylls: Analysis of plant materials, pp. 143–196 in Vol. 4 of Modem Methods of Plant Analysis. Berlin: Springer 1955.Google Scholar
  118. Smith, J. H. C., and V. M. K. Young: Chlorophyll formation and accumulation in plants, pp. 393–442. In: Radiation biology, Vol. 3. New York: McGraw Hill Co. 1956.Google Scholar
  119. Spruit, C. J. P., and E. C. Wassink: The simultaneous observation of oxidation-reduction potentials and chlorophyll fluorescence of Chlorella suspensions. Biochim. biophys. Acta 15, 357–366 (1954).PubMedGoogle Scholar
  120. *Stoll, A., u. E. Wiedemann: Chlorophyll. Fortschr. chem. Forsch. 2, 538–608 (1952).Google Scholar
  121. Strain, H. H.: Functions and properties of the chloroplast pigments, pp. 133–178. In: Photosynthesis in plants. Ames, Iowa: Iowa State Coll. Press 1949.Google Scholar
  122. Cellular opacity and the activity of chloroplast pigments in photosynthesis. Science 112, 161–164 (1950).Google Scholar
  123. Similarities between so-called chlorophyll and oxidized chlorophyll b, and between so-called chlorophyll a“ and oxidized chlorophyll a. J. Amer. chem. Soc. 77, 5195 (1955).Google Scholar
  124. Strehler, B. S., and V. H. Lynch: Photosynthetic luminescence and photo-induced absorption spectrum changes in Chlorella. Science 123, 462–463 (1956).PubMedGoogle Scholar
  125. Studies on the primary process in photosynthesis. II. Some relationships between light-induced absorption spectrum changes and chemiluminescence during photosynthesis. Arch. Biochem. 70, 527–546 (1957).Google Scholar
  126. Tamiya, H., E. Hase, K. Shibata, A. Mituya, T. Iwamura, T. Nihei and T. Sasa: Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature, pp. 204–232. In: Algal culture from laboratory to pilot plant. Carnegie Inst. Wash. Publ. No 600. Wash. D. C. 1953.Google Scholar
  127. Tanada, T.: The photosynthetic efficiency of carotenoid pigments in Navicula minima. Amer. J. Bot. 38, 276–283 (1951).Google Scholar
  128. Trurnit, H. J., and G. Colmano: Chloroplast studies. I. Absorption spectra of chlorophyll monolayers at liquid interfaces. Biochim. biophys. Acta 31, 434–447 (1959).PubMedGoogle Scholar
  129. Virgin, H. I.: The distortion of fluorescence spectra in leaves by light scattering and its reduction by infiltration. Physiol. Plantarum (Copenh.) 7, 560–570 (1954).Google Scholar
  130. The conversion of protochlorophyll to chlorophyll a in continuous and intermittent light. Physiol. Plantarum (Copenh.) 8, 389–403 (1955a).Google Scholar
  131. Protochlorophyll formation and greening in etiolated barley leaves. Physiol. Plantarum (Copenh.) 8, 630–643 (1955b).Google Scholar
  132. Some notes on the fluorescence spectra of plants in vivo. Physiol. Plantarum (Copenh.) 9, 674–681 (1956.)Google Scholar
  133. Vorob’eva, L. M., and A. A. Krasnovskh: The photochemically active form of chlorophyll in leaves and its transformations, Biochimija 21, 126–136 (1956) [Russian].Google Scholar
  134. *Warburg, O.: Über die katalytische Wirkung der lebendigen Substanz, S. 1–528. Berlin: Springer 1928.Google Scholar
  135. *Wassink, E. C.: Chlorophyll fluorescence and photosynthesis. Advanc. Enzymol. 2, 91–199 (1951).Google Scholar
  136. Wassink, E. C., and J. Rombach: Preliminary report on experiments dealing with phosphate metabolism in the induction phase of photosynthesis in Chlorella. Proc. Kon. Ned. Akad. v. Wetensch., Ser. C 57, 493–497 (1954).Google Scholar
  137. Wassmk, E. C., and C. J. P. Spbuit: A comparison of various phenomena connected with photosynthesis (fluorescence, redox potentials, phosphate exchanges, gas exchange, and others) with special reference to induction effects in Chlorella. VIII. Congr. Internat. de Bot. 1954. Lab. of Plant Phys. Res. Agric. Univ. Wageningen, Netherlands, 115. Comm. Presented at VIII. Internat. Congr. of Bot. at Brussels, 1955, pp. 3–8.Google Scholar
  138. Watson, W. F., and R. Livingston: Self-quenching and sensitization of fluorescence of chlorophyll solutions. J. chem. Phys. 18, 802–809 (1950).Google Scholar
  139. Weigl, J. W., and R. Livingston: Infrared spectra of chlorophyll and related compounds. J. Amer. chem. Soc. 75, 2173 (1953).Google Scholar
  140. *Willstätteb, R., u. A. Stoll: Untersuchungen über Chlorophyll. Berlin: Springer 1913.Google Scholar
  141. Witt, H. T.: Vorläufige Mitteilung. Zum Primärprozeß der Photosynthese. Z. physik. Chem., N. F. 4, 120–123 (1955a).Google Scholar
  142. Kurzzeitige Absorptionsänderungen beim Primärprozeß der Photosynthese. Naturwissenschaften 42, 72 (1955b).Google Scholar
  143. Experimente zum Primärprozeß der Photosynthese. Z. Elektrochem. 59, 981–986 (1955c).Google Scholar
  144. Wood, R. W.: Physical optics. New York: MacMillan Co. 1934.Google Scholar
  145. Yocum, C. S., and L. R. Blinks: Photosynthetic efficiency of marine plants. J. gen. Physiol. 38, 1–16 (1954).PubMedGoogle Scholar
  146. Zscheile, F. P., and C. L. Comar: Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gaz. 102, 463–481 (1941).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • C. S. French

There are no affiliations available

Personalised recommendations