Conservation of the Original X and Homology of the X-linked Genes in Placental Mammals

  • Susumu Ohno
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 1)


Comparative DNA values of various vertebrates considered in Chapter 3 have indicated the polyphyletic origin of vertebrate genomes. It appeared that a series of polyploidization of the original vertebrate genome occurred in ancient times. Once the chromosomal sex-determining mechanism was well established, the genome of that lineage was stabilized, and no further gene duplication by polyploidization was possible. Indeed, diverse species of placental mammals gave the identical DNA value of 7.0 × 10−9 mg per diploid nucleus. It then became apparent that in this class extensive speciation from a common ancestor was accomplished almost exclusively by allelic mutation of individual gene loci with little or no change in the total number of gene loci.


Placental Mammal Diverse Species Deer Mouse Defective Mutation Amelogenesis Imperfecta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awa, A., M. Sasaki, and S. Takayama: An in vitro study of the somatic chromosomes in several mammals. Jap. J. Zool. 12, 257–265 (1959).Google Scholar
  2. Bailey, D. W.: Mosaic histocompatibility of skin grafts from female mice. Science 141, 631–634 (1963).PubMedCrossRefGoogle Scholar
  3. Barr, M. L.: Das Geschlechtschromatin (The Sex Chromatin). In: Die Intersexualität, pp. 50–73. Ed. by Claus Overzier. Stuttgart (Germany): Georg Thieme Verlag 1961.Google Scholar
  4. Beutler, E.: Drug-induced hemolytic anemia (primaquine sensitivity). In: The metabolic basis of inherited disease, pp. 1031–1067. Eds. J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson. New York: MacGraw-Hill Book Company Inc. 1960.Google Scholar
  5. Bierens DE Haan, J. A., and M. J. Frima: Versuche über den Farbensinn der Lemuren. A. vergl. Physiol. 12, 603–631 (1930).CrossRefGoogle Scholar
  6. Biggs, R., and J. M. Mathews: The treatment of haemorrhage in von Willebrand’s disease and the blood level of Factor VIII (AHG). Brit. J. Haematol. 9, 203–214 (1963).CrossRefGoogle Scholar
  7. Boyer, S. H., I. H. Porter, and R. Weilboecher: Electrophoretic heterogeniety of glucose-6-phosphate dehydrogenase and its relationship to enzyme deficiency in man. Proc. Natl. Acad. Sci. U.S. 48, 1868–1876 (1962).CrossRefGoogle Scholar
  8. Byrd, R. B., and T. Cooper: Hereditary iron-loading anemia with secondary hemochromatosis. Ann. intern. Med. 55, 103–123 (1961).PubMedGoogle Scholar
  9. Childs, B., W. H. Zinkham, E. A. Browne, E. L. Kimbro, and J. V. Tor-Bert: A genetic study of a defect in glutathione metabolism of the erythrocyte. Bull. Johns Hopkins Hosp. 102, 21–37 (1958).PubMedGoogle Scholar
  10. Chu, E. H. Y., and M. A. Bender: Cytogenetics and evolution of primates. Ann. N. Y. Acad. Sci. 102, 253–266 (1962).PubMedCrossRefGoogle Scholar
  11. Cooley, T. B.: Severe type of hereditary anemia with elliptocytosis: interesting consequence of splenectomy. Amer. J. med. Sci. 209, 561–568 (1945).Google Scholar
  12. Davidson, W. M., and D. R. Smith: The nuclear sex of leukocytes. In: Intersexuality. Edited by C. Overzier. London: Academic Press Ltd. 1963.Google Scholar
  13. Drieux, H., M. Priouzeau, G. Thiery et M. L. Priouzeau: Hypotrichose congénitale avec anodontie, acérie et macroglossie chez la veau. Rec. Méd. vét. 126, 385–399 (1950).PubMedGoogle Scholar
  14. Dry, F. W.: The coat of the mouse. J. Genet. 16, 287–340 (1926).CrossRefGoogle Scholar
  15. Eldridge, F., and F. W. Atkeson: Streaked hairlessness in Holstein-Friesian cattle: A sex-linked lethal character. J. Hered. 44, 265–271 (1953).Google Scholar
  16. Falconer, D. S., D. S. Fraser, and J. W. B. King: The genetics and development of “crinkled”, a new mutant in the house mouse. J. Genet. 50, 324–344 (1951).CrossRefGoogle Scholar
  17. Falconer, D. S., D. S. Fraser, and J. W. B. King: Total sex-linkage in the house mouse. Z. indukt. Abstamm.- u. Vererb.-L. 85, 210–219 (1953).CrossRefGoogle Scholar
  18. Falconer, D. S., and J. H. Isaacson: The genetics of sex-linked anaemia in the mouse. Genet. Res. 3, 248–250 (1962).CrossRefGoogle Scholar
  19. Filbes, R. R., and C. W. Parr: Human red blood cell phosphogluconate dehydrogenases. Nature 200, 890 (1963).CrossRefGoogle Scholar
  20. Franceschetti, A., and D. Klein: Two families with parents of different types of red-green blindness. Acta genet. (Basel) 7, 255–259 (1957).Google Scholar
  21. Graham, J. B., J. A. Buckwalter, L. J. Hartley, and K. M. Brinkhaus: Canine hemophilia: observations on the course, the clotting anomaly, and the effect of blood transfusions. J. exp. Med. 90, 97–111 (1947).CrossRefGoogle Scholar
  22. Graham, J. B.: The inheritance of vascular hemophilia: a new and interesting problem in human genetics. J. Med. Educ. 34, 385–396 (1959).PubMedGoogle Scholar
  23. Grether, W. F.: Color vision and color blindness in monkeys. Comp. Psychol. Monographs 15 (4), # 76 (1939).Google Scholar
  24. Grewal, M. S.: A sex-linked anemia in the mouse. Genet. Res. 3, 238–247 (1962).CrossRefGoogle Scholar
  25. Grüneberg, H.: Genes and genotypes affecting the teeth of the mouse. J. Embryol. exp. Morphol. 14, 137–160 (1965).PubMedGoogle Scholar
  26. Hamilton, W. F., and T. B. Coleman: Trichromatic vision in the pigeon as illustrated by the spectral hue discrimination curve. J. comp. Psychol. 15, 183–191 (1933).CrossRefGoogle Scholar
  27. Hsu, T. C., H. H. Rearden, and G. F. Luquette: Karyological studies of nine species of Felidae. Amer. Naturalist XCVII, 225–234 (1963).Google Scholar
  28. Hutt, F. B., C. G. Rickard, and R. A. Field: Sex-linked hemophilia in dogs. J. Hered. 39, 2–9 (1948).PubMedGoogle Scholar
  29. Jacob, F., and J. Monod: Genetic regulatory mechanism in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961).PubMedCrossRefGoogle Scholar
  30. Kazazian, H. H. JR., W. J. Young, and B. Childs: X-linked 6-phosphogluconate dehydrogenase in Drosophila: Subunit associations. Science 150, 1601–1602 (1965).PubMedCrossRefGoogle Scholar
  31. Kirkman, H. N., H. D. Riley JR., and B. B. Crowell: Different enzymic expressions of mutants of human glucose-6-phosphate dehydrogenase. Proc. Natl. Acad. Sci. U.S. 46, 938–944 (1960).CrossRefGoogle Scholar
  32. Kirkman, H. N., and E. M. Hendrickson: Glucose-6-phosphate dehydrogenase from human erythrocytes. II. Subactive states of the enzyme from normal persons. J. Biol. Chem. 237, 2371–2376 (1962).PubMedGoogle Scholar
  33. Kirkman, H. N., and E. M. Hendrickson: Sex-linked electrophoretic difference in glucose-6-phosphate dehydrogenase. Amer. J. hum. Genet. 15, 241–258 (1963).PubMedGoogle Scholar
  34. Klinger, H. P.: The somatic chromosomes of some primates (Tupaia glis, Nycticebus coucang, Tarsius bancanus, Cercocebus aterrimus, Symphalangus syndactylus). Cytogenetics 2, 140–151 (1963).CrossRefGoogle Scholar
  35. Ladd-Franklin, C.: Colour and colour theories. New York: Harcourt Brace & Co. 1929.Google Scholar
  36. Levan, A., T. C. Hsu, and H. F. Stich: The idiogram of the mouse. Hereditas 48, 676–687 (1962).Google Scholar
  37. Mann, J. D., A. Cahan, A. G. Gelb, N. Fisher, J. Hamper, P. Tippett, R. Sanger, and R. R. Race: A sex-linked blood group. Lancet I, 8–10 (1962).CrossRefGoogle Scholar
  38. Marks, P. A., and R. T. Gross: Erythrocyte glucose-6-phosphate dehydrogenase deficiency; evidence of difference between Negroes and Caucasians with respect to this genetically determined trait. J. clin. Invest. 38, 2253–2262 (1959).PubMedCrossRefGoogle Scholar
  39. Mathai, C. K., S. Ohno, and E. Beutler: Sex-linkage of the glucose-6phosphate dehydrogenase gene in the family Equidae. Nature 209, 115–116 (1966).CrossRefGoogle Scholar
  40. Matthey, R.: La formule chromosomique et le problème de la détermination sexuelle chez Ellobius lutescens Thomas. Rodentia-Muridae-Microtinae. Arch. Klaus-Stift. Vererb.-L. 28, 65–73 (1953).Google Scholar
  41. Matthey, R.: Un nouveau type de détermination chromosomique de sexe chez les mammifères Ellobious lutescens Th. et Microtus (Chilotus) oregoni Bachm. (Muridés-Microtinés). Experientia XIV /7, 240 (1958).CrossRefGoogle Scholar
  42. McKusick, V. A.: On the X-chromosome of man. Quart. Rev. Biol. 37, 69–175 (1962).PubMedCrossRefGoogle Scholar
  43. Moore, K. L., and M. L. Barr: Morphology of the nerve cell nuclei in mammals, with special reference to the sex chromatin. J. comp. Neurol. 98, 213–231 (1953).PubMedCrossRefGoogle Scholar
  44. Muhrer, M. E., A. G. Hogan, and R. Bogart: Defect in coagulation mechanisms of swine blood. Amer. J. Physiol. 136, 355–359 (1942).Google Scholar
  45. Mustard, J. F., H. C. Roswell, G. A. Robinson, T. D. Hoeksema, and H. G. Downie: Canine hemophilia B (Christmas Disease). Brit. J. Haemat. 6, 259–266 (1960).PubMedCrossRefGoogle Scholar
  46. Nossel, H. L., R. K. Archer, and R. G. Macfarlane: Equine haemophilia: Report of a case and its response to multiple infusions of hetero-specific AHG. Brit. J. Haematol. 8, 335–342 (1962).CrossRefGoogle Scholar
  47. Ohno, S., W. D. Kaplan, and R. Kinosita: Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415–418 (1959).PubMedCrossRefGoogle Scholar
  48. Ohno, S., J. Trujillo, C. Stenius, L. C. Christian, and R. Teplitz: Possible germ cell chimeras among newborn dizygotic twin calves (Bos taurus). Cytogenetics 1, 258–265 (1962).PubMedCrossRefGoogle Scholar
  49. Ohno, S., J. Jainchill, and C. Stenius: The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics 2, 232–239 (1963).CrossRefGoogle Scholar
  50. Ohno, S., W. Beçak, and M. L. Beçak: X-autosome ratio and the behavior pattern of individual X-chromosomes in placental mammals. Chromosolna 15, 14–30 (1964).CrossRefGoogle Scholar
  51. Ohno, S., J. Poole, and I. Gustavsson: Sex-linkage of erythrocyte glucose-6phosphate dehydrogenase in two species of wild hares. Science 150, 1737–1738 (1965).PubMedCrossRefGoogle Scholar
  52. Ohno, S., H. Payne, M. Morrison, and E. Beutler: Hexose-6-phosphate de- hydrogenase found in human liver. Science 153, 1015–1016 (1966).PubMedCrossRefGoogle Scholar
  53. Opitz, J. M.: Introduction to medical genetics. Part I. J. I.wa St. med. Soc. 51, 393–409 (1961).Google Scholar
  54. Parsons, J. H.: An introduction to the study of color vision. Cambridge ( England ): Univ. Press 1924.Google Scholar
  55. Robinson, A. (ed.) (Denver Study group): A proposed standard system of nomenclature of human mitotic chromosomes. J. Amer. med. Ass. 174, 159–162 (1960).CrossRefGoogle Scholar
  56. Sasaki, M. S., and S. Makino: Revised study of the chromosomes of domestic cattle and the horse. J. Hered. 53, 157–162 (1962).PubMedGoogle Scholar
  57. Shaw, C. R.: Electrophoretic variation in enzymes. Science 149, 936–943 (1965).PubMedCrossRefGoogle Scholar
  58. Shaw, C. R., and E. Barto: Autosomally determined polymorphism of glucose-6phosphate dehydrogenase in Peromyscus. Science 148, 1099–1100 (1965).PubMedCrossRefGoogle Scholar
  59. Shaw, C. R.: Glucose-6-phosphate dehydrogenase: Homologous molecules in deer mouse and man. Science 153, 1013–1015 (1966).PubMedCrossRefGoogle Scholar
  60. Steinberg, A. G.: Progress in the study of genetically determined human gamma globulin types (the Gm and Inv groups). Progr. med. Genetics 2, 1–33 (1962).Google Scholar
  61. Trujillo, J. M., C. Stenius, L. C. Christian, and S. Ohno: Chromosomes of the horse, the donkey and the mule. Chromosoma (Berl.) 13, 243–248 (1962).CrossRefGoogle Scholar
  62. Trujillo, B. Walden, P. O’neil, and H. B. Anstall: Sex-linkage of glucose-6phosphate dehydrogenase in the horse and donkey. Science 148, 1603–1604 (1965).PubMedCrossRefGoogle Scholar
  63. Warner, L. H.: The problem of color vision in fishes. Quart. Rev. Biol. 6, 329–348 (1931).CrossRefGoogle Scholar
  64. Wojtusiak, R. J.: Über den Farbensinn der Schildkröten. Z. vergl. Physiol. 18, 393–436 (1933).Google Scholar
  65. Young, W., J. E. Porter, and B. Childs: Glucose-6-phosphate dehydrogenase in Drosophila: X-linked electrophoretic variants. Science 143, 140 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope MedicalDuarteUSA

Personalised recommendations