Advertisement

Evidence Indicating that the X and the Y or the Z and the W were Originally an Homologous Pair of Ordinary Chromosomes

  • Susumu Ohno
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 1)

Abstract

Today, the X and Y of mammals and the Z and W of birds are totally different from each other in size as well as genetic content. Yet, it can be shown that the two were originally an homologous pair of ordinary chromosomes or autosomes. A broad review of the sex-determining mechanism of various vertebrates enables us to reconstruct, step-by-step, this process of sex chromosome differentiation.

Keywords

Lower Vertebrate Oryzias Latipes Female Heterogamety Gonochoristic Species Male Heterogamety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, T.: On the inheritance of color in a fresh-water fish Aplocheilus latipes Temmick and Schlegel, with special reference to the sex-linked inheritance. Genetics 6, 554–573 (1921).PubMedGoogle Scholar
  2. Atz, J. W.: Intersexuality in fishes: In: Intersexuality in vertebrates including man, pp. 145–232. London and New York: Academic Press 1964.Google Scholar
  3. Chang, C. Y., and E. Witscht: Genic control and hormonal reversal of sex differentiation in Xenopus. Proc. Soc. exp. Biol. (N. Y.) 93, 140–144 (1956).Google Scholar
  4. Gallien, L.: Inversion totale du sexe chez Xenopus laevis Daud. â la suite d’un treatment gynogéne par le benzoate d’oestradiol administré pendant la vie larvaire. C. R. Acad. Sci. (Paris) 237, 1565–1566 (1953).Google Scholar
  5. Gordon, M.: Genetics of Platypoecilus maculatus. IV. The sex-determining mechanism in two wild populations of the Mexican platyfish. Genetics 32, 8–17 (1947).Google Scholar
  6. Gordon, M.: Genetics of Platypoecilus maculatus. V. Heterogametic sex-determining mechanism in females of a domesticated stock originally from British Honduras. Zoologica 32, 127–134 (1951).Google Scholar
  7. Harrington, R. W.: Twenty-four-hour rhythms of internal self-fertilization and of oviposition by hermaphrodites of Rivulus marmoratus. Physiol. Zool. 36, 325–341 (1963).Google Scholar
  8. Humphrey, R. R.: Sex inversion in the amphibia. Biol. Symp. 9, 81–104 (1942).Google Scholar
  9. Lavenda, N.: Sexual differences and normal protogynous hermaphroditism in the Atlantic sea bass, Centropristes striatus. Copeia 3, 185–194 (1949).CrossRefGoogle Scholar
  10. Matthey, R.: Les chromosomes de vertébrés. Lausanne 1949.Google Scholar
  11. Mikamo, K., and E. Witscht: Masculinization and breeding of the WW Xenopus. Experientia 20, 622 (1964).PubMedCrossRefGoogle Scholar
  12. Smith, C. L.: Hermaphroditism in some serranid fishes from Bermuda. Pap. Michigan Acad. Sci., Arts and Letters 44, 111–119 (1959).Google Scholar
  13. Winge, O.: One-sided masculine and sex-linked inheritance in Lebistes reticulatus. J. Genetics 12, 145–162 (1922).CrossRefGoogle Scholar
  14. Winge, O., and E. Ditlevsen: Color inheritance and sex determination in Lebistes. Heredity 1, 65–83 (1947).CrossRefGoogle Scholar
  15. Yamamoto, T.: Progenies of sex-reversal males in the medaka, Oryzias latipes. J. exp. Zool. 146, 163–180 (1961).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope MedicalDuarteUSA

Personalised recommendations