Homotopy of Varieties in the Etale Topology

  • M. Artin
  • B. Mazur
Conference paper


This paper presents an outline of some recent work; proofs of the results we announce will be published elsewhere.


Homotopy Type Homotopy Group Homotopy Category Discrete Valuation Ring Integral Quadratic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artin, M., and A. Grothendieck: Séminaire de Géométrie algébrique 1963–64.zbMATHGoogle Scholar
  2. [1a]
    Artin, M., and A. Grothendieck: Cohomologie étale des Schémas. Mimeographed notes. Institute des Hautes Etudes Scientiffiques 1963–64.Google Scholar
  3. [2]
    Bass, H., M. Lazard, and J.-P. Serre: Sous-groupes d’indice fini dans SL (n, Z). Bull. A.M.S. 70. No. 3. 385–392 (1964).MathSciNetCrossRefGoogle Scholar
  4. [3]
    Enriques, F.: Le Superficie Algebriche. Bologna 1949.zbMATHGoogle Scholar
  5. [4]
    Gabriel, P., et M. Zisman: Séminaire Homotopique. Mimeographed notes. Université de Strasbourg 1963–64.Google Scholar
  6. [5]
    Grothendieck, A.: Séminaire de Géométrie algébrique, Exposé 1. Mimeographed notes. Institute des Haute Etudes Scientifiques 1960–61.Google Scholar
  7. [6]
    Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. Séminaire Bourbaki, 12, No. 195 (1959–60).Google Scholar
  8. [7]
    Kan, D. M.: On Homotopy Theory and C.S.S. Groups. Annals of Math. 68, 38–53 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [8]
    Lubkkin, S.: On a Conjecture of A. Weil. American Journal of Mathematics (to appear).Google Scholar
  10. [9]
    Milnor, J.: The Geometric Realization of a Semi-Simplicial Complex. Ann. of Math. 65, 357–362 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [10]
    Serre, J.-P.: Cohomologie Galoisienne, Lecture notes in Mathematics, No. 5, Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  12. [11]
    Serre, J.-P.: Exemples de variétés projectives conjugées non homeomorpnes. Comptes Rendus, Ac. Sc. Paris. 258, 4194–4196 (1964).Google Scholar
  13. [12]
    Verdier, J.-L.: Séminaire de Géométrie algébrique. (1963–64) - Cohomologie étale des Schémas. Exposé V, appendice, Mimeographed notes, Institute des Hautes Études Scientifiques. • M thGoogle Scholar
  14. [13]
    Zassennhaus, H.: Neuer Beweis der Endlichkeit der Klassenzahl. Abh. a Sem. Hamburg. 12, 276–288 (1938).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • M. Artin
  • B. Mazur

There are no affiliations available

Personalised recommendations