Advertisement

Polyenfettsäuren und Prostaglandinbiosynthese

Conference paper
Part of the Verhandlungen der Deutschen Gesellschaft für Innere Medizin book series (VDGINNERE, volume 92)

Zusammenfassung

Störungen der Eicosanoidbiosynthese sind bei einer Reihe von Krankheiten nachgewiesen worden, besonders bei Herz-Kreislauferkrankungen [41], der Hypertonie [19], bei gastrointestinalen [16], Nieren- [40] und Lungenerkrankungen [15, 47, 50], sowie bei neoplastischen [36] und immunologischen Prozessen [15]. Wenn die Eicosanoidbiosynthese durch Zufuhr von mehrfach ungesättigten Fettsäuren manipuliert werden kann, so ergeben sich hieraus diätetische Therapiemöglichkeiten, welche unterstützend oder an Stelle einer Arzneimitteltherapie genutzt werden könnten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adam O, Wolfram G, Zöllner N (1980) Platelet fatty acids and prostaglandin turnover during defined linoleic acid intake with formula diets. Artery 8:85–89PubMedGoogle Scholar
  2. 2.
    Adam O, Wolfram G, Zöllner N (1982) Prostaglandin formation in man during intake of different amounts of linoleic acid in formula diets. Ann Nutr Metab 26:315–323PubMedCrossRefGoogle Scholar
  3. 3.
    Adam O, Dill-Wiesner M, Wolfram G, Zöllner N (1980) Plättchenaggregation und Prostaglandinumsatz beim Menschen unter definierter Linolsäurezufuhr mit Formeldiäten. Res Exp Med 177:227–235CrossRefGoogle Scholar
  4. 4.
    Adam O, Wolfram G, Zöllner N (1984) Effect of different linoleic acid intake on prostaglandin biosynthesis and kidney function in man. Am J Clin Nutr 40:415–421Google Scholar
  5. 5.
    Adam O, Wolfram G, Zöllner N (1986) Effect of a-linolenic acid in the human diet on linoleic acid metabolism and prostaglandin biosynthesis. J Lipid Res 27:421–426PubMedGoogle Scholar
  6. 6.
    Adam O, Wolfram G, Zöllner N (1986) Vergleich der Wirkung von ß-Linolensäure und Eicosapentaensäure auf die Prostaglandinsynthese und die Thrombozytenfunktion beim Menschen. Klin Wochenschr 54:274–280CrossRefGoogle Scholar
  7. 7.
    Aizawa Y, Yamada K, Hata M (1978) Double isotope derivative dilution method for the determination of prostaglandin F and E type metabolites in urine. Prostaglandins 14:1165–1174Google Scholar
  8. 8.
    Alfin-Slater RB, Aftergood L (1968) Essential fatty acids reinvestigated. Physiol Rev 48:758–784PubMedGoogle Scholar
  9. 9.
    Bang HO, Dyberg J (1980) Lipid metabolism and ischemic heart disease in Greenland Eskimos. In: Draper HH (ed) Advances in Nutrition Research, Vol 3. Plenum Press, New York, pp 1–22CrossRefGoogle Scholar
  10. 10.
    Borgeat P, Samuelsson B (1979) Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 254:2643–2646PubMedGoogle Scholar
  11. 11.
    Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-gamma-linoleic acid by rabbit polymorphonuclear leukocytes. J Biol Chem 251:7816–7820PubMedGoogle Scholar
  12. 12.
    Brenner RR, Peluffo RC (1966) Regulation of unsaturated fatty acids biosynthesis. Effects of unsaturated fatty acids of 18 carbons on microsomal desaturation of linoleic into gamma-linoleic acid. Biochim Biophys Acta 176:471–479Google Scholar
  13. 13.
    Bronsgeest-Schoute HC, vanGent CM, Luten JB, Ruiter A (1981) The effect of various intakes of w-3 fatty acids on the blood lipid composition in healthy human subjects. Am J Clin Nutr 34:1752–1757PubMedGoogle Scholar
  14. 14.
    Clark MR, Triebwasser WF, Marsh JM, Lemaire WJ (1978) Prostaglandins in ovulation. Ann Biol anim Biochim Biophys 18:427–434CrossRefGoogle Scholar
  15. 15.
    Dorsch W, Adam O, Weber J, Ziegeltrum T (1985) Antihistaminic effects of anion extracts -Detection of Benzyl-and other Isothiocyanates as antiasthmatic compounds of plant origin. Europ J Pharmacol 107:17–24CrossRefGoogle Scholar
  16. 16.
    Dupont J, Mathias MM (1969) Biooxidation of linoleic acid via methylmalonyl CoA. Lipids 4:478–483 -PubMedCrossRefGoogle Scholar
  17. 17.
    Dyerberg J, Bang HO, Hjorne N (1975) Fatty acid composition of the plasma lipids in Geenland Eskimos. Am J Clin Nutr 28:958 966PubMedGoogle Scholar
  18. 18.
    Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR (1978) Eicosapentaenoic and prevention of thrombosis and atherosclerosis. Lancet i: 117–119CrossRefGoogle Scholar
  19. 19.
    Ellis CK, Whorton R, Oelz O, Sweetman BJ, Wilkinson GR, Oates JA (1977) Enhanced renal prostaglandin synthesis in renal hypertensive rats fed dihomo-gamma-linolenic acid. Fed Proc 36:402–411Google Scholar
  20. 20.
    Epstein M, Lifschitz M, Rappaport K (1982) Augmentation of prostaglandin production by linoleic acid in man. Clin Sci 63:565–571PubMedGoogle Scholar
  21. 21.
    Ferretti A, Judd JT, Marshall MW, Flanagan VP, Roman JM, Matusik EJ Jr (1985) Moderate changes in linoleate intake do not influence the systemic production of E prostaglandins. Lipids 20:268–272PubMedCrossRefGoogle Scholar
  22. 22.
    Friedmann Z, Seyberth H, Lamberth EL, Oates J (1978) Decreased prostaglandin-E turnover in infants with essential fatty acid deficiency. Pediat Res 12:711–714CrossRefGoogle Scholar
  23. 23.
    Frölich TC, Wilson TW, Sweetman BJ, Smigel M, Nies AS, Carr K, Watson JT, Oates JA (1975) Urinary Prostaglandins. Identification and origin. J Clin Invest 55:763–770PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia PT, Holman RT (1965) Competitive inhibitions in the metabolism of polyunsaturated fatty acids studied via the composition of the phospholipids, triglycerides and cholesteryl esters of rat tissues. J Am Oil Chem Soc 42:1137–1141PubMedCrossRefGoogle Scholar
  25. 25.
    Granström E, Kindahl H (1976) Radioimmunoassay for urinary metabolites of prostaglandin F2ß. Prostaglandins 12:759–783PubMedGoogle Scholar
  26. 26.
    Hamberg M, Samuelsson B (1971) On the metabolism of prostaglandins E1 and E2 in man. J Biol Chem 246:6713–6721PubMedGoogle Scholar
  27. 27.
    Hamberg M (1973) Quantitative studies on prostaglandin synthesis in man. Anal Biochem 55:368–378PubMedCrossRefGoogle Scholar
  28. 28.
    Hassam AG, Rivers JP, Crawford MA (1977) The failure of the cat to desaturate linoleic acid. Its nutritional implications. Nutr Metab 21:321–328PubMedCrossRefGoogle Scholar
  29. 29.
    Hassam AG, Willis AL, Denton JP, Stevens P, Crawford MA (1979) The effect of essential fatty acid deficient diet on the levels of prostaglandins and their fatty acid precursors in the rabbit brain. Lipids 14:78–83CrossRefGoogle Scholar
  30. 30.
    Hornstra G, Christ-Hazelhof E, Haddeman E, tenHoor F, Nugteren DH (1981) Fish oil feeding lowers thromboxane and prostacyclin production by rat platelets and aorta and does not result in the formation of prostaglandin I3. Prostaglandins 21:727–738PubMedGoogle Scholar
  31. 31.
    Houtsmuller UMT, vander Beek A, Zaalberg J (1969) A new criterion in the bioassay of essential fatty acids. Lipids 4:571–579PubMedCrossRefGoogle Scholar
  32. 32.
    Houtsmuller UMT (1982) Columbinic acid, a new type of essential fatty acid. J Lipid Res 20:889–896Google Scholar
  33. 33.
    Irvine RF (1981) How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16Google Scholar
  34. 34.
    Irvine RF, Dawson RMC (1979) Transfer of arachidonic acid between phospholipids in rat liver microsomes. Biochem Biophys Res Commun 91:1399–1405PubMedCrossRefGoogle Scholar
  35. 35.
    Jubiz W, Radmark O, Lingren JA, Malmsten C, Samuelsson B (1981) Products formed by initial oxygenation of arachidonic acid at C-15. Biochem Biophys Res Commun 99:976–986PubMedCrossRefGoogle Scholar
  36. 36.
    Kraus RS, Eling TE (1984) Arachidonic acid-dependent cooxidation. A potential pathway for the activation of chemical carcinogenesis in vivo. Biochem Pharmacol 33:3319–3323CrossRefGoogle Scholar
  37. 37.
    Kupiecki FP, Sekhar NC, Weeks JR (1968) Effects of some prostaglandins in essential fatty acid deficient and normal rats. J Lipid Res 9:602–609PubMedGoogle Scholar
  38. 38.
    Lapetina EG, Billah MM, Cuatrecasas P (1978) The phosphatidyl-inositol cycle and the regulation of arachidonic acid production. Nature 292:367–369CrossRefGoogle Scholar
  39. 39.
    Lijnen PJ, Verschueren LJ, Fagard RH, Amery AK (1980) Urinary prostaglandins E2 and F2ß in normal subjects. Arch Int Physiol Biochim 88:237–238CrossRefGoogle Scholar
  40. 40.
    Limas C, Limas CJ (1979) Enhanced renomedullary prostaglandin synthesis in spontaneously hypertensive rats: role of a phospholipase A2. Am J Physiol 236:H65PubMedGoogle Scholar
  41. 41.
    Majerus WP (1983) Arachidonate metabolism in vascular disorders. J Clin Invest 72:1521–1225PubMedCrossRefGoogle Scholar
  42. 42.
    Michell RJ (1982) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147Google Scholar
  43. 43.
    Moncada S, Vane JR (1978) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmac Rev 30:293–331Google Scholar
  44. 44.
    Needleman P (1978) Characterization of the reaction sequence involved in phospholipid labeling and deacylation and prostaglandin synthesis and action. J Allergy Clin Immunol 26:96–102CrossRefGoogle Scholar
  45. 45.
    Nugteren DH, van Evert WC, Soeting WJ, Spuy JH (1980) The effect of different amounts of linoleic acid in the diet on the excretion of urinary prostaglandin metabolites in the rat. In: Ramwell P (ed) Edvances in prostaglandin and thromboxane research, Vol 6 and 7:1142–1147Google Scholar
  46. 46.
    Pace-Asciak CR, Edwards NS (1980) Tetranor-thromboxane B2 is the principal urinary catabolite formed after i.v. infusion of thromboxane B2 in the rat. Biochem Biophys Res Common 97:81–86CrossRefGoogle Scholar
  47. 47.
    Peskar BA (1983) Lungenfunktion und Prostaglandine. Inn Med 10:367–370Google Scholar
  48. 48.
    Rosenkranz B, Frölich JC (1984) Problems of assessment of prostacyclin formation in vivo. Prostaglandins 27:655–657PubMedGoogle Scholar
  49. 49.
    Rosenkranz B, Fischer C, Weimer KE, Frölich JC (1980) Metabolism of prostacyclin and 6-keto-prostaglandin Flß in man. J Biol Chem 255:1094–1098Google Scholar
  50. 50.
    Samuelsson B, Hammarstöm S (1980) Nomenclature of leukotrienes. Prostaglandins 19:645–654PubMedGoogle Scholar
  51. 51.
    Schremmer JM, Blank ML, Wykle RL (1979) Bradykinin stimulated release of arachidonic acid from the phospholipids of HSDMC-cells: comparison of diacyl phospholipids and plasmalogens as sources of prostaglandin precursors. Prostaglandins 18:491–506PubMedGoogle Scholar
  52. 52.
    Seyberth HW, Oelz O, Kennedy T, Sweetman BJ, Danon A, Frölich JC, Heimberg M, Oates JA (1975) Increased arachidonate in lipids after administration to man: Effects on prostaglandin biosynthesis. Clin Pharmacol Ther 18:521–529PubMedGoogle Scholar
  53. 53.
    Shemes M, Bensadoun A, Hansel W (1976) Lipoprotein lipase activity in the bovine corpus luteum during the estrous cycle and early pregnancy. Proc Soc Exp Biol Med 151:667–669CrossRefGoogle Scholar
  54. 54.
    Sprecher H, vanRollins M, Sun F (1984) Dihomoprostaglandins and thromboxane: a prostaglandin family from adrenergic acid that may be preferentially synthesized from the kidney. J Biol Chem 257:3912–3918Google Scholar
  55. 55.
    Srivastava KC (1985) Docosahexaenoic acid and linoleic acid are anti-aggregatory, and alter arachidonic acid metabolism in human platelets. Prostaglandins leukotrienes and Med 17:319–327CrossRefGoogle Scholar
  56. 56.
    Weiner TW, Sprecher H (1984) Arachidonic acid, 5.8.11-eicosatrienoic acid and 5.8.11.14.17-eicosapentaenoic acid. Dietary manipulations of the levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet lipids. Biochim Biophys Acta 792:293–303PubMedCrossRefGoogle Scholar
  57. 57.
    Zöllner N, Adam O, Wolfram G (1978) The influence of linoleic acid intake on the excretion of urinary prostaglandin metabolites. Res Exp Med 175:149–153CrossRefGoogle Scholar

Copyright information

© J. F. Bergmann Verlag, München 1986

Authors and Affiliations

  • O. Adam
    • 1
  1. 1.Medizinische PoliklinikUniversität MünchenDeutschland

Personalised recommendations