Sepsis pp 371-381 | Cite as

Modulating Effects of Pentoxifylline on Cytokine Release Syndromes

  • F. U. Schade
  • P. Zabel
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 18)


Tumor necrosis factor-α (TNF) has been identified as the most important mediator of septic shock and cachexia in animals and humans. Moreover, TNF plays a major role in the pathophysiological events of many other infectious and immunological diseases. Therefore, drugs interfering with the formation of TNF may have beneficial effects in these clinical circumstances.


Tumor Necrosis Factor Renal Transplant Recipient Cerebral Malaria Endotoxin Shock Cytokine Release Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dinarello C (1989) Interleukin 1 and its biologically related cytokines. Adv Immunol 44:153–162PubMedCrossRefGoogle Scholar
  2. 2.
    Schade FU, Burmeister I, Elekes E, Egel R, Wolter DT (1989) Mononuclear phagocytes and eicosanoids: aspects of their synthesis and biological activities. Blut 59:475–479PubMedCrossRefGoogle Scholar
  3. 3.
    Spengler RN, Spengler ML, Lincoln P, Remick DG, Strieter RM, Kunkel SL (1989) Dynamics of dibutyryl cyclic AMP and prostaglandin E2-mediated suppression of lipopolysaccharide-induced tumor necrosis factor alpha gene expression. Infect Immun 57:2837–2844PubMedGoogle Scholar
  4. 4.
    Porter JM, Cutler BS, Lee BY (1982) Pentoxifylline efficacy in the treatment of intermittant claudication: multicenter controlled double-blind trial with objective assessment of chronic occlusive arterial disease patients. Am Heart J 104:66–72PubMedCrossRefGoogle Scholar
  5. 5.
    Schade FU (1990) Pentoxifylline increases survival in endotoxin shock and decreases TNF formation. Circ Shock 31:171–181PubMedGoogle Scholar
  6. 6.
    Strieter RM, Remick DG, Ward PA, Spengler RN, Lynch JP, Larrick J, Kunkel SL (1988) Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun 155:1230–1236PubMedCrossRefGoogle Scholar
  7. 7.
    Waage A, Sorensen M, Stordal B (1990) Differential effect of oxpentyfylline on tumor necrosis factor and interleukin-6 production. Lancet 335:543PubMedCrossRefGoogle Scholar
  8. 8.
    Schade FU, Schönharting MM (1986) Effect of pentoxifylline on the endotoxininduced shock reaction. Clin Hemorheol 6:462–468Google Scholar
  9. 9.
    Schade FU, von der Bosch J, Schönharting MM (1988) Increase of survival rate by pentoxifylline in endotoxin shock. In: Mandell GL, Nowick WJ (eds) Pentoxifylline and leukocyte function. Hoechst Roussel Pharmaceuticals, Somerville, pp 175–183Google Scholar
  10. 10.
    Schade FU, von der Bosch J, Schönharting MM (1989) Pentoxifylline increases survival of mice in endotoxin shock. In: Schrör K, Sinzinger H (eds) Prostaglandins in clinical research. Liss, New York, pp 223–227Google Scholar
  11. 11.
    Zabel P, Wolter DT, Schönharting MM, Schade UF (1989) Oxpentifylline in endotoxaemia. Lancet 1334:1474–1477CrossRefGoogle Scholar
  12. 12.
    Michie HR, Manogue KR, Spriggs DR et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1418–1426CrossRefGoogle Scholar
  13. 13.
    Dinarello CA (1987) The biology of interleukin-1 and comparison to tumor necrosis factor. Immunol Lett 16:227–232PubMedCrossRefGoogle Scholar
  14. 14.
    Tannenbaum CS, Hamilton TA (1989) Lipopolysaccharide-induced gene expression in murine peritoneal macrophages is selectively suppressed by agents that elevate intracellular cAMP. J Immunol 142:1274–1280PubMedGoogle Scholar
  15. 15.
    Ferran C, Sheehan K, Schreiber R, Bach JF, Chatenoud L (1991) Anti-TNF abrogates the cytokine-related anti-CD-3 induced syndrome. Transplant Proc 23:849–854PubMedGoogle Scholar
  16. 16.
    Gaston SG, Deierhoi MH, Patterson T (1991) OKT3 first dose reaction: association with T cell subsets and cytokine release. Kidney Int 39:141–146PubMedCrossRefGoogle Scholar
  17. 17.
    Zabel P, Leimenstoll G, Schröder P, Elfeldt R, Schlaak M, Niedermayer W (1991) Pentoxifylline suppresses OKT3-induced tumor necrosis factor alpha formation in renal transplant recipients. Z Tx Med 3:62–65Google Scholar
  18. 18.
    Schandene P, Vandenbussche P, Crusiaux A et al (1992) Differential effects of pentoxyfylline on the production of tumor necrosis factor-alpha and interleukin-6 by monocytes and T-cells. Immunology 76:30–34PubMedGoogle Scholar
  19. 19.
    Alegre ML, Gastaldello K, Abromowicz D et al (1991) Pentoxyfylline reduces anti-CD3 monoclonal antibodies-induced cytokine release syndrome. Transplantation 52:674–690PubMedCrossRefGoogle Scholar
  20. 20.
    Tracey JK, Lowry SF, Cerami A (1988) Cachectin: a hormone that triggers acute shock and chronic cachexia. J Infect Dis 157:413–420PubMedCrossRefGoogle Scholar
  21. 21.
    Zabel P, Greinert U, Entzian P, Schlaak M (1992) Effects of pentoxifylline on circulating cytokines (TNF and IL-6) in severe pulmonary tuberculosis. Eur Cytokine Network 3:248AGoogle Scholar
  22. 22.
    Holler E, Kolb HJ, Möller A et al (1990) Increased serum levels of tumor necrosis factor a precede major complications of bone marrow transplantation. Blood 75:1011–1016PubMedGoogle Scholar
  23. 23.
    Bianco AJ, Appelbaum FR, Nemunaitis J et al (1991) Phase I–II trial of pentoxyfylline for the prevention of transplant-related toxicities following bone marrow transplantation. Blood 78:1205–1211PubMedGoogle Scholar
  24. 24.
    Berens KL, Luke DR (1990) Pentoxifylline in the isolated perfused rat kidney. Transplantation 49:876–879PubMedCrossRefGoogle Scholar
  25. 25.
    Welsh CH, Lien D, Wothen GS, Weil JV (1988) Pentoxifylline decreases endotoxin-induced pulmonary neutrophil sequestration and extravascular protein accumulation in the dog. Am Rev Respir Dis 138:1106–1114PubMedGoogle Scholar
  26. 26.
    Coccia MT, Waxman K, Soliman MH, Tominaga G. Pinderski L (1989) Pentoxifylline improves survival following hemorrhagic shock. Crit Care Med 17:36–38PubMedCrossRefGoogle Scholar
  27. 27.
    Schönharting MM, Schade FU (1989) The effect of pentoxifylline in septic shock–new pharmacological aspects of an established drug. J Med 20:97–105PubMedGoogle Scholar
  28. 28.
    Zabel P, Schönharting MM, Schade FU, Schlaak M (1991) Effects of pentoxifylline in endotoxaemia in human volunteers. In: Sturck A (ed) Bacterial endotoxins, cytokine mediators and new therapies for sepsis. Wiley-Liss, New York, pp 207–213Google Scholar
  29. 29.
    Fazely F, Dezube BJ, Allen-Ryan J, Pardee AB, Ruprecht RM (1991) Pentoxifylline (Trental) decreases the replication of the human immunodeficiency virus type 1 in human peripheral blood mononuclear cells and in cultured T-cells. Blood 77:1653–1656PubMedGoogle Scholar
  30. 30.
    Beutler B, Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316:379–382PubMedCrossRefGoogle Scholar
  31. 31.
    Dezube BJ, Fridovich-Keil JL, Bouvard I, Lange RF, Pardee AB (1990) Oxpentifylline and well being in patients with cancer. Lancet 335:662PubMedCrossRefGoogle Scholar
  32. 32.
    Kern P, Hemmer CJ, von Damme J, Gruss HJ, Dietrich M (1989) Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med 87:139–143PubMedCrossRefGoogle Scholar
  33. 33.
    Sharief MK, Hentges R (1991) Association between tumor necrosis factor alpha and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472PubMedCrossRefGoogle Scholar
  34. 34.
    Kremsner PG, Grundmann H, Neifer S, Sliwa K, Sahlmüller G, Hegenscheid B, Blenzie U (1991) Pentoxyfylline prevents murine cerebral malaria. J Infect Dis 164:605–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • F. U. Schade
  • P. Zabel

There are no affiliations available

Personalised recommendations